2,344 research outputs found

    A note on the magnetic spatial forcing of a ferrofluid layer

    Get PDF
    We report on the response of a thin layer of ferrofluid to a spatially modulated magnetic field. This field is generated by means of a constant current in a special arrangement of aluminum wires. The full surface profile of the liquid layer is recorded by means of the absorption of X-rays. The outcome is analyzed particularly with regard to the magnetic self focusing effect under a deformable fluid layer

    Spectral properties of Bunimovich mushroom billiards

    Full text link
    Properties of a quantum mushroom billiard in the form of a superconducting microwave resonator have been investigated. They reveal unexpected nonuniversal features such as, e.g., a supershell effect in the level density and a dip in the nearest-neighbor spacing distribution. Theoretical predictions for the quantum properties of mixed systems rely on the sharp separability of phase space - an unusual property met by mushroom billiards. We however find deviations which are ascribed to the presence of dynamic tunneling.Comment: 4 pages, 7 .eps-figure

    Magnetic traveling-stripe-forcing: enhanced transport in the advent of the Rosensweig instability

    Get PDF
    A new kind of contactless pumping mechanism is realized in a layer of ferrofluid via a spatio-temporally modulated magnetic field. The resulting pressure gradient leads to a liquid ramp, which is measured by means of X-rays. The transport mechanism works best if a resonance of the surface waves with the driving is achieved. The behavior can be understood semi-quantitatively by considering the magnetically influenced dispersion relation of the fluid.Comment: 6 Pages, 8 Figure

    Induced Time-Reversal Symmetry Breaking Observed in Microwave Billiards

    Full text link
    Using reciprocity, we investigate the breaking of time-reversal (T) symmetry due to a ferrite embedded in a flat microwave billiard. Transmission spectra of isolated single resonances are not sensitive to T-violation whereas those of pairs of nearly degenerate resonances do depend on the direction of time. For their theoretical description a scattering matrix model from nuclear physics is used. The T-violating matrix elements of the effective Hamiltonian for the microwave billiard with the embedded ferrite are determined experimentally as functions of the magnetization of the ferrite.Comment: 4 pages, 4 figure

    Theoretical investigation into the possibility of very large moments in Fe16N2

    Get PDF
    We examine the mystery of the disputed high-magnetization \alpha"-Fe16N2 phase, employing the Heyd-Scuseria-Ernzerhof screened hybrid functional method, perturbative many-body corrections through the GW approximation, and onsite Coulomb correlations through the GGA+U method. We present a first-principles computation of the effective on-site Coulomb interaction (Hubbard U) between localized 3d electrons employing the constrained random-phase approximation (cRPA), finding only somewhat stronger on-site correlations than in bcc Fe. We find that the hybrid functional method, the GW approximation, and the GGA+U method (using parameters computed from cRPA) yield an average spin moment of 2.9, 2.6 - 2.7, and 2.7 \mu_B per Fe, respectively.Comment: 8 pages, 3 figure

    Prevalence of marginally unstable periodic orbits in chaotic billiards

    Full text link
    The dynamics of chaotic billiards is significantly influenced by coexisting regions of regular motion. Here we investigate the prevalence of a different fundamental structure, which is formed by marginally unstable periodic orbits and stands apart from the regular regions. We show that these structures both {\it exist} and {\it strongly influence} the dynamics of locally perturbed billiards, which include a large class of widely studied systems. We demonstrate the impact of these structures in the quantum regime using microwave experiments in annular billiards.Comment: 6 pages, 5 figure

    First Experimental Observation of Superscars in a Pseudointegrable Barrier Billiard

    Full text link
    With a perturbation body technique intensity distributions of the electric field strength in a flat microwave billiard with a barrier inside up to mode numbers as large as about 700 were measured. A method for the reconstruction of the amplitudes and phases of the electric field strength from those intensity distributions has been developed. Recently predicted superscars have been identified experimentally and - using the well known analogy between the electric field strength and the quantum mechanical wave function in a two-dimensional microwave billiard - their properties determined.Comment: 4 pages, 5 .eps figure

    Die Entwickelung der Dermatologie in Berlin

    Get PDF
    DIE ENTWICKELUNG DER DERMATOLOGIE IN BERLIN Die Entwickelung der Dermatologie in Berlin / Richter, Paul Friedrich (Public Domain) ( - ) Bibliothek des Hauptgesundheitsamtes der Stadtgemeinde Berlin ( - ) Title page ( - ) Preface ( - ) [Text] ( - ) Imprint ( - ) ColorChart ( -
    • …
    corecore