25 research outputs found

    Efficacy and outcome of expanded newborn screening for metabolic diseases - Report of 10 years from South-West Germany *

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>National newborn screening programmes based on tandem-mass spectrometry (MS/MS) and other newborn screening (NBS) technologies show a substantial variation in number and types of disorders included in the screening panel. Once established, these methods offer the opportunity to extend newborn screening panels without significant investment and cost. However, systematic evaluations of newborn screening programmes are rare, most often only describing parts of the whole process from taking blood samples to long-term evaluation of outcome.</p> <p>Methods</p> <p>In a prospective single screening centre observational study 373 cases with confirmed diagnosis of a metabolic disorder from a total cohort of 1,084,195 neonates screened in one newborn screening laboratory between January 1, 1999, and June 30, 2009 and subsequently treated and monitored in five specialised centres for inborn errors of metabolism were examined. Process times for taking screening samples, obtaining results, initiating diagnostic confirmation and starting treatment as well as the outcome variables metabolic decompensations, clinical status, and intellectual development at a mean age of 3.3 years were evaluated.</p> <p>Results</p> <p>Optimal outcome is achieved especially for the large subgroup of patients with medium-chain acyl-CoA dehydrogenase deficiency. Kaplan-Meier-analysis revealed disorder related patterns of decompensation. Urea cycle disorders, organic acid disorders, and amino acid disorders show an early high and continuous risk, medium-chain acyl-CoA dehydrogenase deficiency a continuous but much lower risk for decompensation, other fatty acid oxidation disorders an intermediate risk increasing towards the end of the first year. Clinical symptoms seem inevitable in a small subgroup of patients with very early disease onset. Later decompensation can not be completely prevented despite pre-symptomatic start of treatment. Metabolic decompensation does not necessarily result in impairment of intellectual development, but there is a definite association between the two.</p> <p>Conclusions</p> <p>Physical and cognitive outcome in patients with presymptomatic diagnosis of metabolic disorders included in the current German screening panel is equally good as in phenylketonuria, used as a gold standard for NBS. Extended NBS entails many different interrelated variables which need to be carefully evaluated and optimized. More reports from different parts of the world are needed to allow a comprehensive assessment of the likely benefits, harms and costs in different populations.</p

    The Genetic Landscape and Epidemiology of Phenylketonuria

    Get PDF
    Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]–1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A>G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C>T (p.Arg408Trp) (22.2%), c.1066−11G>A (IVS10−11G>A) (6.4%), and c.782G>A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066−11G>A];[1066−11G>A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome.Fil: Hillert, Alicia. No especifĂ­ca;Fil: Anikster, Yair. No especifĂ­ca;Fil: Belanger Quintana, Amaya. No especifĂ­ca;Fil: Burlina, Alberto. No especifĂ­ca;Fil: Burton, Barbara K.. No especifĂ­ca;Fil: Carducci, Carla. No especifĂ­ca;Fil: Chiesa, Ana Elena. Consejo Nacional de Investigaciones CientĂ­ficas y TĂ©cnicas. Oficina de CoordinaciĂłn Administrativa Parque Centenario. Centro de Investigaciones EndocrinolĂłgicas "Dr. CĂ©sar Bergada". Gobierno de la Ciudad de Buenos Aires. Centro de Investigaciones EndocrinolĂłgicas "Dr. CĂ©sar Bergada". FundaciĂłn de EndocrinologĂ­a Infantil. Centro de Investigaciones EndocrinolĂłgicas "Dr. CĂ©sar Bergada"; ArgentinaFil: Christodoulou, John. No especifĂ­ca;Fil: Dordevic, Maja. No especifĂ­ca;Fil: Desviat, Lourdes R.. No especifĂ­ca;Fil: Eliyahu, Aviva. No especifĂ­ca;Fil: Evers, Roeland A.F.. No especifĂ­ca;Fil: Fajkusova, Lena. No especifĂ­ca;Fil: Feillet, Francois. No especifĂ­ca;Fil: Bonfim Freitas, Pedro E.. No especifĂ­ca;Fil: Gizewska, MarĂ­a. No especifĂ­ca;Fil: Gundorova, Polina. No especifĂ­ca;Fil: Karall, Daniela. No especifĂ­ca;Fil: Kneller, Katya. No especifĂ­ca;Fil: Kutsev, Sergey I.. No especifĂ­ca;Fil: Leuzzi, Vincenzo. No especifĂ­ca;Fil: Levy, Harvey L.. No especifĂ­ca;Fil: Lichter Koneck, Uta. No especifĂ­ca;Fil: Muntau, Ania C.. No especifĂ­ca;Fil: Namour, Fares. No especifĂ­ca;Fil: Oltarzewsk, Mariusz. No especifĂ­ca;Fil: Paras, Andrea. No especifĂ­ca;Fil: Perez, BelĂ©n. No especifĂ­ca;Fil: Polak, Emil. No especifĂ­ca;Fil: Polyakov, Alexander V.. No especifĂ­ca;Fil: Porta, Francesco. No especifĂ­ca;Fil: Rohrbach, Marianne. No especifĂ­ca;Fil: Scholl BĂŒrgi, Sabine. No especifĂ­ca;Fil: SpĂ©cola, Norma. No especifĂ­ca;Fil: Stojiljkovic, Maja. No especifĂ­ca;Fil: Shen, Nan. No especifĂ­ca;Fil: Santana da Silva, Luiz C.. No especifĂ­ca;Fil: Skouma, Anastasia. No especifĂ­ca;Fil: van Spronsen, Francjan. No especifĂ­ca;Fil: Stoppioni, Vera. No especifĂ­ca;Fil: Thöny, Beat. No especifĂ­ca;Fil: Trefz, Friedrich K.. No especifĂ­ca;Fil: Vockley, Jerry. No especifĂ­ca;Fil: Yu, Youngguo. No especifĂ­ca;Fil: Zschocke, Johannes. No especifĂ­ca;Fil: Hoffmann, Georg F.. No especifĂ­ca;Fil: Garbade, Sven F.. No especifĂ­ca;Fil: Blau, Nenad. No especifĂ­ca

    The Genetic Landscape and Epidemiology of Phenylketonuria

    Get PDF
    Phenylketonuria (PKU), caused by variants in the phenylalanine hydroxylase (PAH) gene, is the most common autosomal-recessive Mendelian phenotype of amino acid metabolism. We estimated that globally 0.45 million individuals have PKU, with global prevalence 1:23,930 live births (range 1:4,500 [Italy]-1:125,000 [Japan]). Comparing genotypes and metabolic phenotypes from 16,092 affected subjects revealed differences in disease severity in 51 countries from 17 world regions, with the global phenotype distribution of 62% classic PKU, 22% mild PKU, and 16% mild hyperphenylalaninemia. A gradient in genotype and phenotype distribution exists across Europe, from classic PKU in the east to mild PKU in the southwest and mild hyperphenylalaninemia in the south. The c.1241A gt G (p.Tyr414Cys)-associated genotype can be traced from Northern to Western Europe, from Sweden via Norway, to Denmark, to the Netherlands. The frequency of classic PKU increases from Europe (56%) via Middle East (71%) to Australia (80%). Of 758 PAH variants, c.1222C gt T (p.Arg408Trp) (22.2%), c.1066-11G gt A (IVS10-11G gt A) (6.4%), and c.782G gt A (p.Arg261Gln) (5.5%) were most common and responsible for two prevalent genotypes: p.[Arg408Trp];[Arg408Trp] (11.4%) and c.[1066-11G gt A];[1066-11G gt A] (2.6%). Most genotypes (73%) were compound heterozygous, 27% were homozygous, and 55% of 3,659 different genotypes occurred in only a single individual. PAH variants were scored using an allelic phenotype value and correlated with pre-treatment blood phenylalanine concentrations (n = 6,115) and tetrahydrobiopterin loading test results (n = 4,381), enabling prediction of both a genotype-based phenotype (88%) and tetrahydrobiopterin responsiveness (83%). This study shows that large genotype databases enable accurate phenotype prediction, allowing appropriate targeting of therapies to optimize clinical outcome

    3-hydroxy-3-methylglutaryl-CoA lyase deficiency in an adult with leukoencephalopathy

    No full text
    3-Hydroxy-3-methylglutaryl-CoA lyase deficiency is a disorder of leucine metabolism that usually presents with recurrent episodes of life-threatening hypoglycemia during early childhood. We report on a 36-year-old woman with seizures, recurrent metabolic disturbances, and severe leukoencephalopathy. The diagnosis was made by analysis of amino acids in urine and serum and was confirmed by demonstration of the deficient enzyme in cultured skin fibroblasts. The patient improved clinically on oral L-carnitine substitution. This treatable condition can remain unrecognized in adults and should be considered a potential cause of leukoencephalopath

    Successful intrauterine treatment of a patient with cobalamin C defect

    Get PDF
    Cobalamin C (cblC) defect is an inherited autosomal recessive disorder that affects cobalamin metabolism. Patients are treated with hydroxycobalamin to ameliorate the clinical features of early-onset disease and prevent clinical symptoms in late-onset disease. Here we describe a patient in whom prenatal maternal treatment with 30 mg/week hydroxycobalamin and 5 mg/day folic acid from week 15 of pregnancy prevented disease manifestation in a girl who is now 11 years old with normal IQ and only mild ophthalmic findings. The affected older sister received postnatal treatment only and is severely intellectually disabled with severe ophthalmic symptoms. This case highlights the potential of early, high-dose intrauterine treatment in a fetus affected by the cblC defect

    Allelic phenotype values: a model for genotype-based phenotype prediction in phenylketonuria

    Full text link
    PURPOSE The nature of phenylalanine hydroxylase (PAH) variants determines residual enzyme activity, which modifies the clinical phenotype in phenylketonuria (PKU). We exploited the statistical power of a large genotype database to determine the relationship between genotype and phenotype in PKU. METHODS A total of 9336 PKU patients with 2589 different genotypes, carrying 588 variants, were investigated using an allelic phenotype value (APV) algorithm. RESULTS We identified 251 0-variants encoding inactive PAH, and assigned APVs (0 = classic PKU; 5 = mild PKU; 10 = mild hyperphenylalaninaemia) to 88 variants in PAH-functional hemizygous patients. The genotypic phenotype values (GPVs) were set equal to the higher-APV allele, which was assumed to be dominant over the lower-APV allele and to determine the metabolic phenotype. GPVs for 8872 patients resulted in cut-off ranges of 0.0-2.7 for classic PKU, 2.8-6.6 for mild PKU and 6.7-10.0 for mild hyperphenylalaninaemia. Genotype-based phenotype prediction was 99.2% for classic PKU, 46.2% for mild PKU and 89.5% for mild hyperphenylalaninaemia. The relationships between known pretreatment blood phenylalanine levels and GPVs (n = 4217), as well as tetrahydrobiopterin responsiveness and GPVs (n = 3488), were significant (both P < 0.001). CONCLUSIONS APV and GPV are powerful tools to investigate genotype-phenotype associations, and can be used for genetic counselling of PKU families

    Differences of Phenylalanine Concentrations in Dried Blood Spots and in Plasma: Erythrocytes as a Neglected Component for This Observation

    No full text
    Monitoring phenylalanine (Phe) concentrations is critical for the management of phenylketonuria (PKU). This can be done in dried blood spots (DBS) or in EDTA plasma derived from capillary or venous blood. Different techniques are used to measure Phe, the most common being flow-injection analysis tandem mass spectrometry (FIA-MS-MS) and ion exchange chromatography (IEC). Significant differences have been reported between Phe concentrations in various sample types measured by different techniques, the cause of which is not yet understood. We measured Phe concentrations in 240 venous blood samples from 199 patients with hyperphenylalaninemia in dried blood spots, EDTA plasma and erythrocytes by FIA-MS-MS and IEC. Phe concentrations were significantly lower in erythrocytes than in plasma leading to about 19% lower Phe DBS concentrations compared with plasma independent from the method used for quantification. As most therapy recommendations for PKU patients are based on plasma concentrations reliable conversion of DBS into plasma concentrations is necessary. Variances of Phe concentrations in plasma and DBS are not linear but increases with higher concentrations indicating heteroscedasticity. We therefore suggest the slope of the 75th percentile from quantile regression as a correction factor

    Differences of Phenylalanine Concentrations in Dried Blood Spots and in Plasma: Erythrocytes as a Neglected Component for This Observation

    No full text
    Monitoring phenylalanine (Phe) concentrations is critical for the management of phenylketonuria (PKU). This can be done in dried blood spots (DBS) or in EDTA plasma derived from capillary or venous blood. Different techniques are used to measure Phe, the most common being flow-injection analysis tandem mass spectrometry (FIA-MS-MS) and ion exchange chromatography (IEC). Significant differences have been reported between Phe concentrations in various sample types measured by different techniques, the cause of which is not yet understood. We measured Phe concentrations in 240 venous blood samples from 199 patients with hyperphenylalaninemia in dried blood spots, EDTA plasma and erythrocytes by FIA-MS-MS and IEC. Phe concentrations were significantly lower in erythrocytes than in plasma leading to about 19% lower Phe DBS concentrations compared with plasma independent from the method used for quantification. As most therapy recommendations for PKU patients are based on plasma concentrations reliable conversion of DBS into plasma concentrations is necessary. Variances of Phe concentrations in plasma and DBS are not linear but increases with higher concentrations indicating heteroscedasticity. We therefore suggest the slope of the 75th percentile from quantile regression as a correction factor
    corecore