73 research outputs found

    Clinical and laboratory variability in a cohort of patients diagnosed with type 1 VWD in the United States

    Get PDF
    Von Willebrand disease (VWD) is the most common inherited bleeding disorder, and type 1 VWD is the most common VWD variant. Despite its frequency, diagnosis of type 1 VWD remains the subject of much debate. In order to study the spectrum of type 1 VWD in the United States, the Zimmerman Program enrolled 482 subjects with a previous diagnosis of type 1 VWD without stringent laboratory diagnostic criteria. VWF laboratory testing and full length VWF gene sequencing were performed for all index cases and healthy control subjects in a central laboratory. Bleeding phenotype was characterized using the ISTH Bleeding Assessment Tool. At study entry, 64% of subjects had VWF:Ag or VWF:RCo below the lower limit of normal, while 36% had normal VWF levels. VWF sequence variations were most frequent in subjects with VWF:Ag < 30 IU/dL (82%) while subjects with type 1 VWD and VWF:Ag ≥ 30 IU/dL had an intermediate frequency of variants (44%). Subjects whose VWF testing was normal at study entry had a similar rate of sequence variations as the healthy controls at 14% of subjects. All subjects with severe type 1 VWD and VWF:Ag ≤ 5 IU/dL had an abnormal bleeding score, but otherwise bleeding score did not correlate with VWF:Ag level. Subjects with a historical diagnosis of type 1 VWD had similar rates of abnormal bleeding scores compared to subjects with low VWF levels at study entry. Type 1 VWD in the United States is highly variable, and bleeding symptoms are frequent in this population

    Changing practices: The specialised domestic violence court process

    Get PDF
    Specialised domestic violence courts, initially developed in the United States of America, have been recognised by other jurisdictions including Canada, Australia and the United Kingdom. This article presents a case study of K Court in Toronto, drawing upon documentary evidence, direct observations and interviews with key informants. It is argued that the specialised domestic violence court process includes changing practices of some of the key stakeholders. Learning lessons from abroad can offer jurisdictions insights that can steer implementation of appropriate practices in the field

    TIC 168789840: A Sextuply Eclipsing Sextuple Star System

    Get PDF
    We report the discovery of a sextuply eclipsing sextuple star system from TESS data, TIC 168789840, also known as TYC 7037-89-1, the first known sextuple system consisting of three eclipsing binaries. The target was observed in Sectors 4 and 5 during Cycle 1, with lightcurves extracted from TESS Full Frame Image data. It was also previously observed by the WASP survey and ASAS-SN. The system consists of three gravitationally bound eclipsing binaries in a hierarchical structure of an inner quadruple system with an outer binary subsystem. Follow-up observations from several different observatories were conducted as a means of determining additional parameters. The system was resolved by speckle interferometry with a 0farcs42 separation between the inner quadruple and outer binary, inferring an estimated outer period of ~2 kyr. It was determined that the fainter of the two resolved components is an 8.217 day eclipsing binary, which orbits the inner quadruple that contains two eclipsing binaries with periods of 1.570 days and 1.306 days. Markov Chain Monte Carlo (MCMC) analysis of the stellar parameters has shown that the three binaries of TIC 168789840 are triplets, as each binary is quite similar to the others in terms of mass, radius, and Teff. As a consequence of its rare composition, structure, and orientation, this object can provide important new insight into the formation, dynamics, and evolution of multiple star systems. Future observations could reveal if the intermediate and outer orbital planes are all aligned with the planes of the three inner eclipsing binaries

    Representation in the (Artificial) Immune System

    Get PDF
    Much of contemporary research in Artificial Immune Systems (AIS) has partitioned into either algorithmic machine learning and optimisation, or, modelling biologically plausible dynamical systems, with little overlap between. We propose that this dichotomy is somewhat to blame for the lack of significant advancement of the field in either direction and demonstrate how a simplistic interpretation of Perelson’s shape-space formalism may have largely contributed to this dichotomy. In this paper, we motivate and derive an alternative representational abstraction. To do so we consider the validity of shape-space from both the biological and machine learning perspectives. We then take steps towards formally integrating these perspectives into a coherent computational model of notions such as life-long learning, degeneracy, constructive representations and contextual recognition—rhetoric that has long inspired work in AIS, while remaining largely devoid of operational definition
    corecore