25,305 research outputs found
Recommended from our members
Screening for QT Prolongation in the Emergency Department: Is There a Better “Rule of Thumb?”
Introduction: Identification of QT prolongation in the emergency department (ED) is critical for appropriate monitoring, disposition, and treatment of patients at risk for torsades de pointes (TdP). Unfortunately, identifying prolonged QT is not straightforward. Computer algorithms are unreliable in identifying prolonged QT. Manual QT-interval assessment methods, including QT correction formulas and the QT nomogram, are time-consuming and are not ideal screening tools in the ED. Many emergency clinicians rely on the “rule of thumb” or “Half the RR” rule (Half-RR) as an initial screening method, but prior studies have shown that the Half-RR rule performs poorly as compared to other QT assessment methods. We sought to characterize the problems associated with the Half-RR rule and find a modified screening tool to more safely assess the QT interval of ED patients for prolonged QT.Methods: We created graphs comparing the prediction of the Half-RR rule to other common QT assessment methods for a spectrum of QT and heart rate pairs. We then proposed various modifications to the Half-RR rule and assessed these modifications to find an improved “rule of thumb.”Results: When compared to other methods of QT correction, the Half-RR rule appears to be more conservative at normal and elevated heart rates, making it a safe initial screening tool. However, in bradycardia, the Half-RR rule is not sufficiently sensitive in identifying prolonged QT. Adding a fixed QT cutoff of 485 milliseconds (ms) increases the sensitivity of the rule in bradycardia, creating a safer initial screening tool.Conclusion: For a rapid and more sensitive screening evaluation of the QT interval on electrocardiograms in the ED, we propose combining use of the Half-RR rule at normal and elevated heart rates with a fixed uncorrected QT cutoff of 485 ms in bradycardia
Quantum Lattice Fluctuations and Luminescence in C_60
We consider luminescence in photo-excited neutral C_60 using the
Su-Schrieffer-Heeger model applied to a single C_60 molecule. To calculate the
luminescence we use a collective coordinate method where our collective
coordinate resembles the displacement of the carbon atoms of the Hg(8) phonon
mode and extrapolates between the ground state "dimerisation" and the exciton
polaron. There is good agreement for the existing luminescence peak spacing and
fair agreement for the relative intensity. We predict the existence of further
peaks not yet resolved in experiment. PACS Numbers : 78.65.Hc, 74.70.Kn,
36.90+
A numerical study of the r-mode instability of rapidly rotating nascent neutron stars
The first results of numerical analysis of classical r-modes of {\it rapidly}
rotating compressible stellar models are reported. The full set of linear
perturbation equations of rotating stars in Newtonian gravity are numerically
solved without the slow rotation approximation. A critical curve of
gravitational wave emission induced instability which restricts the rotational
frequencies of hot young neutron stars is obtained. Taking the standard cooling
mechanisms of neutron stars into account, we also show the `evolutionary
curves' along which neutron stars are supposed to evolve as cooling and
spinning-down proceed. Rotational frequencies of stars suffering
from this instability decrease to around 100Hz when the standard cooling
mechanism of neutron stars is employed. This result confirms the results of
other authors who adopted the slow rotation approximation.Comment: 4 pages, 2 figures; MNRAS,316,L1(2000
Classical simulation of quantum many-body systems with a tree tensor network
We show how to efficiently simulate a quantum many-body system with tree
structure when its entanglement is bounded for any bipartite split along an
edge of the tree. This is achieved by expanding the {\em time-evolving block
decimation} simulation algorithm for time evolution from a one dimensional
lattice to a tree graph, while replacing a {\em matrix product state} with a
{\em tree tensor network}. As an application, we show that any one-way quantum
computation on a tree graph can be efficiently simulated with a classical
computer.Comment: 4 pages,7 figure
EMRI corrections to the angular velocity and redshift factor of a mass in circular orbit about a Kerr black hole
This is the first of two papers on computing the self-force in a radiation
gauge for a particle moving in circular, equatorial orbit about a Kerr black
hole. In the EMRI (extreme-mass-ratio inspiral) framework, with mode-sum
renormalization, we compute the renormalized value of the quantity
, gauge-invariant under gauge transformations
generated by a helically symmetric gauge vector; and we find the related order
correction to the particle's angular velocity at fixed renormalized
redshift (and to its redshift at fixed angular velocity). The radiative part of
the perturbed metric is constructed from the Hertz potential which is extracted
from the Weyl scalar by an algebraic inversion\cite{sf2}. We then write the
spin-weighted spheroidal harmonics as a sum over spin-weighted spherical
harmonics and use mode-sum renormalization to find the renormalization
coefficients by matching a series in to the large- behavior of
the expression for . The
non-radiative parts of the perturbed metric associated with changes in mass and
angular momentum are calculated in the Kerr gauge
How Much Longer Will it Take? A Ten-year Review of the Implementation of United Nations General Assembly Resolutions 61/105, 64/72 and 66/68 on the Management of Bottom Fisheries in Areas Beyond National Jurisdiction
The United Nations General Assembly (UNGA) in 2002 adopted the first in a series of resolutions regarding the conservation of biodiversity in the deep sea. Prompted by seriousconcerns raised by scientists, non-governmental organizations (NGOs) and numerous States,these resolutions progressively committed States to act both individually and through regional fishery management organizations (RFMOs) to either manage bottom fisheries in areas beyond national jurisdiction to prevent significant adverse impacts on deep-sea species, ecosystems and biodiversity or else prohibit bottom fishing from taking place.Ten years have passed since the adoption of resolution 61/105 in 2006, calling on States to take a set of specific actions to manage bottom fisheries in areas beyond national jurisdiction to protect vulnerable marine ecosystems (VMEs) from the adverse impacts of bottom fishing and ensure the sustainability of deep-sea fish stocks. Despite the considerable progress by some RFMOs, there remain significant gaps in the implementation of key elements and commitments in the resolutions. The Deep Sea Conservation Coalition (DSCC) has prepared this report to assist the UNGA in its review in 2016 and to address the following question: How effectively have the resolutions been implemented
Reactions at Polymer Interfaces: Transitions from Chemical to Diffusion-Control and Mixed Order Kinetics
We study reactions between end-functionalized chains at a polymer-polymer
interface. For small chemical reactivities (the typical case) the number of
diblocks formed, , obeys 2nd order chemically controlled kinetics, , until interfacial saturation. For high reactivities (e.g. radicals) a
transition occurs at short times to 2nd order diffusion-controlled kinetics,
with for unentangled chains while and
regimes occur for entangled chains. Long time kinetics are 1st order and
controlled by diffusion of the more dilute species to the interface: for unentangled cases, while and regimes
arise for entangled systems. The final 1st order regime is governed by center
of gravity diffusion, .Comment: 11 pages, 3 figures, uses poliface.sty, minor changes, to appear in
Europhysics Letter
Soil Moisture Workshop
The Soil Moisture Workshop was held at the United States Department of Agriculture National Agricultural Library in Beltsville, Maryland on January 17-19, 1978. The objectives of the Workshop were to evaluate the state of the art of remote sensing of soil moisture; examine the needs of potential users; and make recommendations concerning the future of soil moisture research and development. To accomplish these objectives, small working groups were organized in advance of the Workshop to prepare position papers. These papers served as the basis for this report
Occurrence of normal and anomalous diffusion in polygonal billiard channels
From extensive numerical simulations, we find that periodic polygonal
billiard channels with angles which are irrational multiples of pi generically
exhibit normal diffusion (linear growth of the mean squared displacement) when
they have a finite horizon, i.e. when no particle can travel arbitrarily far
without colliding. For the infinite horizon case we present numerical tests
showing that the mean squared displacement instead grows asymptotically as t
log t. When the unit cell contains accessible parallel scatterers, however, we
always find anomalous super-diffusion, i.e. power-law growth with an exponent
larger than 1. This behavior cannot be accounted for quantitatively by a simple
continuous-time random walk model. Instead, we argue that anomalous diffusion
correlates with the existence of families of propagating periodic orbits.
Finally we show that when a configuration with parallel scatterers is
approached there is a crossover from normal to anomalous diffusion, with the
diffusion coefficient exhibiting a power-law divergence.Comment: 9 pages, 15 figures. Revised after referee reports: redrawn figures,
additional comments. Some higher quality figures available at
http://www.fis.unam.mx/~dsander
Anomalous Hall Effect in Ferromagnetic Semiconductors in the Hopping Transport Regime
We present a theory of the Anomalous Hall Effect (AHE) in ferromagnetic
(Ga,Mn)As in the regime when conduction is due to phonon-assisted hopping of
holes between localized states in the impurity band. We show that the
microscopic origin of the anomalous Hall conductivity in this system can be
attributed to a phase that a hole gains when hopping around closed-loop paths
in the presence of spin-orbit interactions and background magnetization of the
localized Mn moments. Mapping the problem to a random resistor network, we
derive an analytic expression for the macroscopic anomalous Hall conductivity
. We show that is proportional to the
first derivative of the density of states and thus can be
expected to change sign as a function of impurity band filling. We also show
that depends on temperature as the longitudinal conductivity
within logarithmic accuracy.Comment: 4 pages, 1 eps figure, final versio
- …