16,139 research outputs found
Molecular and fossil evidence place the origin of cichlid fishes long after Gondwanan rifting.
Cichlid fishes are a key model system in the study of adaptive radiation, speciation and evolutionary developmental biology. More than 1600 cichlid species inhabit freshwater and marginal marine environments across several southern landmasses. This distributional pattern, combined with parallels between cichlid phylogeny and sequences of Mesozoic continental rifting, has led to the widely accepted hypothesis that cichlids are an ancient group whose major biogeographic patterns arose from Gondwanan vicariance. Although the Early Cretaceous (ca 135 Ma) divergence of living cichlids demanded by the vicariance model now represents a key calibration for teleost molecular clocks, this putative split pre-dates the oldest cichlid fossils by nearly 90 Myr. Here, we provide independent palaeontological and relaxed-molecular-clock estimates for the time of cichlid origin that collectively reject the antiquity of the group required by the Gondwanan vicariance scenario. The distribution of cichlid fossil horizons, the age of stratigraphically consistent outgroup lineages to cichlids and relaxed-clock analysis of a DNA sequence dataset consisting of 10 nuclear genes all deliver overlapping estimates for crown cichlid origin centred on the Palaeocene (ca 65-57 Ma), substantially post-dating the tectonic fragmentation of Gondwana. Our results provide a revised macroevolutionary time scale for cichlids, imply a role for dispersal in generating the observed geographical distribution of this important model clade and add to a growing debate that questions the dominance of the vicariance paradigm of historical biogeography
Topological entropy of realistic quantum Hall wave functions
The entanglement entropy of the incompressible states of a realistic quantum
Hall system are studied by direct diagonalization. The subdominant term to the
area law, the topological entanglement entropy, which is believed to carry
information about topologic order in the ground state, was extracted for
filling factors 1/3, 1/5 and 5/2. The results for 1/3 and 1/5 are consistent
with the topological entanglement entropy for the Laughlin wave function. The
5/2 state exhibits a topological entanglement entropy consistent with the
Moore-Read wave function.Comment: 6 pages, 6 figures; improved computations and graphics; added
reference
Use of Most Bothersome Symptom as a Coprimary Endpoint in Migraine Clinical Trials: A Post-Hoc Analysis of the Pivotal ZOTRIP Randomized, Controlled Trial.
ObjectiveTo better understand the utility of using pain freedom and most bothersome headache-associated symptom (MBS) freedom as co-primary endpoints in clinical trials of acute migraine interventions.BackgroundAdhesive dermally applied microarray (ADAM) is an investigational system for intracutaneous drug administration. The recently completed pivotal Phase 2b/3 study (ZOTRIP), evaluating ADAM zolmitriptan for the treatment of acute moderate to severe migraine, was one of the first large studies to incorporate MBS freedom and pain freedom as co-primary endpoints per recently issued guidance by the US Food and Drug Administration. In this trial, the proportion of patients treated with ADAM zolmitriptan 3.8 mg, who were pain-free and MBS-free at 2 hours post-dose, was significantly higher than for placebo.MethodsWe undertook a post-hoc analysis of data from the ZOTRIP trial to examine how the outcomes from this trial compare to what might have been achieved using the conventional co-primary endpoints of pain relief, nausea, photophobia, and phonophobia.ResultsOf the 159 patients treated with ADAM zolmitriptan 3.8 mg or placebo, prospectively designated MBS were photophobia (n = 79), phonophobia (n = 43), and nausea (n = 37). Two-hour pain free rates in those with photophobia as the MBS were 36% for ADAM zolmitriptan 3.8 mg and 14% for placebo (P = .02). Corresponding rates for those with phonophobia as the MBS were 14% and 41% (P = .05). For those whose MBS was nausea, corresponding values were 56% and 16%, respectively (P = .01). Two-hour freedom from the MBS for active drug vs placebo were 67% vs 35% (P < .01) for photophobia, 55% vs 43% (P = .45) for phonophobia, and 89% vs 58% for nausea (P = .04). MBS freedom but not pain freedom was achieved in 28%. Only 1 patient (1%) achieved pain freedom, but not MBS freedom. The proportion with both pain and MBS freedom was highest (56%) among those whose MBS was nausea.ConclusionIn this study, the use of MBS was feasible and seemed to compare favorably to the previously required 4 co-primary endpoints
Survival law in a potential model
The radial equation of a simple potential model has long been known to yield
an exponential decay law in lowest order (Breit-Wigner) approximation. We
demonstrate that if the calculation is extended to fourth order the decay law
exhibits the quantum Zeno effect. This model has further been studied
numerically to characterize the extra exponential time parameter which
compliments the lifetime. We also investigate the inverse Zeno effect.Comment: 16 pages, 2 tables, 3 figures, AMS-Te
Path Integrals, Density Matrices, and Information Flow with Closed Timelike Curves
Two formulations of quantum mechanics, inequivalent in the presence of closed
timelike curves, are studied in the context of a soluable system. It
illustrates how quantum field nonlinearities lead to a breakdown of unitarity,
causality, and superposition using a path integral. Deutsch's density matrix
approach is causal but typically destroys coherence. For each of these
formulations I demonstrate that there are yet further alternatives in
prescribing the handling of information flow (inequivalent to previous
analyses) that have implications for any system in which unitarity or coherence
are not preserved.Comment: 25 pages, phyzzx, CALT-68-188
Effects and Propositions
The quantum logical and quantum information-theoretic traditions have exerted
an especially powerful influence on Bub's thinking about the conceptual
foundations of quantum mechanics. This paper discusses both the quantum logical
and information-theoretic traditions from the point of view of their
representational frameworks. I argue that it is at this level, at the level of
its framework, that the quantum logical tradition has retained its centrality
to Bub's thought. It is further argued that there is implicit in the quantum
information-theoretic tradition a set of ideas that mark a genuinely new
alternative to the framework of quantum logic. These ideas are of considerable
interest for the philosophy of quantum mechanics, a claim which I defend with
an extended discussion of their application to our understanding of the
philosophical significance of the no hidden variable theorem of Kochen and
Specker.Comment: Presented to the 2007 conference, New Directions in the Foundations
of Physic
On complex surfaces diffeomorphic to rational surfaces
In this paper we prove that no complex surface of general type is
diffeomorphic to a rational surface, thereby completing the smooth
classification of rational surfaces and the proof of the Van de Ven conjecture
on the smooth invariance of Kodaira dimension.Comment: 34 pages, AMS-Te
Entanglement Entropy of Random Fractional Quantum Hall Systems
The entanglement entropy of the and quantum Hall
states in the presence of short range random disorder has been calculated by
direct diagonalization. A microscopic model of electron-electron interaction is
used, electrons are confined to a single Landau level and interact with long
range Coulomb interaction. For very weak disorder, the values of the
topological entanglement entropy are roughly consistent with expected
theoretical results. By considering a broader range of disorder strengths, the
fluctuation in the entanglement entropy was studied in an effort to detect
quantum phase transitions. In particular, there is a clear signature of a
transition as a function of the disorder strength for the state.
Prospects for using the density matrix renormalization group to compute the
entanglement entropy for larger system sizes are discussed.Comment: 29 pages, 16 figures; fixed figures and figure captions; revised
fluctuation calculation
Commentary: Anderson-Fabry Disease: A Rare Cause of Levodopa-Responsive Early Onset Parkinsonism
This case had young onset parkinsonism beginning at age 45 mainly affecting the right side with foot dystonia and limb pain as an early and prominent feature.1 There was a family history of renal disease in one sister, stroke like episodes and dementia in another sister, and ischemic cardiac disease in the father. Single-photon emission computed tomography of the dopamine transporter showed bilateral reduced uptake and there was a good levodopa response and later development non-motor fluctuations. Although a number of parkinsonian conditions particularly genetic forms of young onset parkinsonism are in the differential, the patient also showed signs of renal (microalbuminuria) and cardiac (left ventricular hypertrophy) dysfunction which further narrowed the differential to conditions such as mitochondrial disease and neuronal inclusion body disease (though brain MRI did not show characteristic white matter changes). Given the severity of pain and renal involvement, Anderson-Fabry was considered as the most likely diagnosis. This x-linked lysosomal storage disease is caused by absent or minimal enzymatic activity of α-galactosidase and usually affects males in whom its fully penetrant but has been described rarely also to affect women.2 It is important to recognize this condition given the availability of treatment with enzyme replacement therapy (agalsidase alfa). The list of genetic parkinsonian conditions is increasing.2 Involvement of non-neurologic organ systems in patient or family members may offer clues to diagnosis. Anderson-Fabry disease specifically must be kept in mind in anyone with young onset parkinsoni
- …