550 research outputs found
Non-monotonic field-dependence of the ZFC magnetization peak in some systems of magnetic nanoparticles
We have performed magnetic measurements on a diluted system of gamma-Fe2O3
nanoparticles (~7nm), and on a ferritin sample. In both cases, the ZFC-peak
presents a non-monotonic field dependence, as has already been reported in some
experiments,and discussed as a possible evidence of resonant tunneling. Within
simple assumptions, we derive expressions for the magnetization obtained in the
usual ZFC, FC, TRM procedures. We point out that the ZFC-peak position is
extremely sensitive to the width of the particle size distribution, and give
some numerical estimates of this effect. We propose to combine the FC
magnetization with a modified TRM measurement, a procedure which allows a more
direct access to the barrier distribution in a field. The typical barrier
values which are obtained with this method show a monotonic decrease for
increasing fields, as expected from the simple effect of anisotropy barrier
lowering, in contrast with the ZFC results. From our measurements on
gamma-Fe2O3 particles, we show that the width of the effective barrier
distribution is slightly increasing with the field, an effect which is
sufficient for causing the observed initial increase of the ZFC-peak
temperatures.Comment: LaTeX file 19 pages, 9 postscript figures. To appear in Phys. Rev. B
(tentative schedule: Dec.97
Relaxation and Landau-Zener experiments down to 100 mK in ferritin
Temperature-independent magnetic viscosity in ferritin has been observed from
2 K down to 100 mK, proving that quantum tunneling plays the main role in these
particles at low temperature. Magnetic relaxation has also been studied using
the Landau-Zener method making the system crossing zero resonant field at
different rates, alpha=dH/dt, ranging from 10^{-5} to 10^{-3} T/s, and at
different temperatures, from 150 mK up to the blocking temperature. We propose
a new Tln(Delta H_{eff}/tau_0 alpha) scaling law for the Landau-Zener
probability in a system distributed in volumes, where Delta H_{eff} is the
effective width of the zero field resonance.Comment: 13 pages, 4 postscript figure
Adiabatic Landau-Zener-St\"uckelberg transition with or without dissipation in low spin molecular system V15
The spin one half molecular system V15 shows no barrier against spin
reversal. This makes possible direct phonon activation between the two levels.
By tuning the field sweeping rate and the thermal coupling between sample and
thermal reservoir we have control over the phonon-bottleneck phenomena
previously reported in this system. We demonstrate adiabatic motion of molecule
spins in time dependent magnetic fields and with different thermal coupling to
the cryostat bath. We also discuss the origin of the zero-field tunneling
splitting for a half-integer spin.Comment: to appear in Phys. Rev. B - Rapid Communication
Magnetic Field Effects on the Far-Infrared Absorption in Mn_12-acetate
We report the far-infrared spectra of the molecular nanomagnet Mn_12-acetate
(Mn_12) as a function of temperature (5-300 K) and magnetic field (0-17 T). The
large number of observed vibrational modes is related to the low symmetry of
the molecule, and they are grouped together in clusters. Analysis of the mode
character based on molecular dynamics simulations and model compound studies
shows that all vibrations are complex; motion from a majority of atoms in the
molecule contribute to most modes. Three features involving intramolecular
vibrations of the Mn_12 molecule centered at 284, 306 and 409 cm-1 show changes
with applied magnetic field. The structure near 284 cm displays the
largest deviation with field and is mainly intensity related. A comparison
between the temperature dependent absorption difference spectra, the gradual
low-temperature cluster framework distortion as assessed by neutron diffraction
data, and field dependent absorption difference spectra suggests that this mode
may involve Mn motion in the crown.Comment: 5 pages, 4 figures, PRB accepte
Nuclear spin driven quantum relaxation in LiY_0.998Ho_0.002F_4
Staircase hysteresis loops of the magnetization of a LiY_0.998Ho_0.002F_4
single crystal are observed at subkelvin temperatures and low field sweep
rates. This behavior results from quantum dynamics at avoided level crossings
of the energy spectrum of single Ho^{3+} ions in the presence of hyperfine
interactions. Enhanced quantum relaxation in constant transverse fields allows
the study of the relative magnitude of tunnel splittings. At faster sweep
rates, non-equilibrated spin-phonon and spin-spin transitions, mediated by weak
dipolar interactions, lead to magnetization oscillations and additional steps.Comment: 5 pages, 5 eps figures, using RevTe
Magnetic Field Dependence of Macroscopic Quantum Tunneling and Coherence of Ferromagnetic Particle
We calculate the quantum tunneling rate of a ferromagnetic particle of diameter in a magnetic field of arbitrary angle. We consider the
magnetocrystalline anisotropy with the biaxial symmetry and that with the
tetragonal symmetry. Using the spin-coherent-state path integral, we obtain
approximate analytic formulas of the tunneling rates in the small -limit for the magnetic field normal to the easy axis (), for the field opposite to the initial easy axis (),
and for the field at an angle between these two orientations (). In addition, we obtain numerically the tunneling rates for
the biaxial symmetry in the full range of the angle of the magnetic
field (), for the values of \epsilon =0.01 and
0.001.Comment: 25 pages of text (RevTex) and 4 figures (PostScript files), to be
published in Phys. Rev.
Oscillation of the tunnel splitting in nanospin systems within the particle mapping formalism
The oscillation of tunnel splitting in the biaxial spin system within
magnetic field along the anisotropy axis is analyzed within the particle
mapping approach, rather than in the (\theta-\phi) spin coherent-state
representation. In our mapping procedure, the spin system is transformed into a
particle moving in the restricted geometry whose wave function subjects
to the boundary condition involving additional phase shift. We obtain the new
topological phase that plays the same role as the Wess-Zumino action in spin
coherent-state representation. Considering the interference of two possible
trajectories, instanton and anti-instanton, we get the identical condition for
the field at which tunneling is quenched, with the previous result within spin
coherent-state representation.Comment: 11 pages, 1 figure; Some typographical errors have been correcte
Nonexponential Relaxation of Magnetization at the Resonant Tunneling Point under a Fluctuating Random Noise
Nonexponential relaxation of magnetization at resonant tunneling points of
nanoscale molecular magnets is interpreted to be an effect of fluctuating
random field around the applied field. We demonstrate such relaxation in
Langevin equation analysis and clarify how the initial relaxation (square-root
time) changes to the exponential decay. The scaling properties of the
relaxation are also discussed.Comment: 4 pages, 4 fgiure
Eigenstates of a Small Josephson Junction Coupled to a Resonant Cavity
We carry out a quantum-mechanical analysis of a small Josephson junction
coupled to a single-mode resonant cavity. We find that the eigenstates of the
combined junction-cavity system are strongly entangled only when the gate
voltage applied at one of the superconducting islands is tuned to certain
special values. One such value corresponds to the resonant absorption of a
single photon by Cooper pairs in the junction. Another special value
corresponds to a {\em two-photon} absorption process. Near the single-photon
resonant absorption, the system is accurately described by a simplified model
in which only the lowest two levels of the Josephson junction are retained in
the Hamiltonian matrix. We noticed that this approximation does not work very
well as the number of photons in the resonator increases. Our system shows also
the phenomenon of ``collapse and revival'' under suitable initial conditions,
and our full numerical solution agrees with the two level approximation result.Comment: 7 pages, and 6 figures. To be published in Phys. Rev.
Tunneling with dissipation and decoherence for a large spin
We present rigorous solution of problems of tunneling with dissipation and
decoherence for a spin of an atom or a molecule in an isotropic solid matrix.
Our approach is based upon switching to a rotating coordinate system coupled to
the local crystal field. We show that the spin of a molecule can be used in a
qubit only if the molecule is strongly coupled with its atomic environment.
This condition is a consequence of the conservation of the total angular
momentum (spin + matrix), that has been largely ignored in previous studies of
spin tunneling.Comment: 4 page
- …