21,457 research outputs found

    Finding high-order analytic post-Newtonian parameters from a high-precision numerical self-force calculation

    Full text link
    We present a novel analytic extraction of high-order post-Newtonian (pN) parameters that govern quasi-circular binary systems. Coefficients in the pN expansion of the energy of a binary system can be found from corresponding coefficients in an extreme-mass-ratio inspiral (EMRI) computation of the change ΔU\Delta U in the redshift factor of a circular orbit at fixed angular velocity. Remarkably, by computing this essentially gauge-invariant quantity to accuracy greater than one part in 1022510^{225}, and by assuming that a subset of pN coefficients are rational numbers or products of π\pi and a rational, we obtain the exact analytic coefficients. We find the previously unexpected result that the post-Newtonian expansion of ΔU\Delta U (and of the change ΔΩ\Delta\Omega in the angular velocity at fixed redshift factor) have conservative terms at half-integral pN order beginning with a 5.5 pN term. This implies the existence of a corresponding 5.5 pN term in the expansion of the energy of a binary system. Coefficients in the pN series that do not belong to the subset just described are obtained to accuracy better than 1 part in 1026523n10^{265-23n} at nnth pN order. We work in a radiation gauge, finding the radiative part of the metric perturbation from the gauge-invariant Weyl scalar ψ0\psi_0 via a Hertz potential. We use mode-sum renormalization, and find high-order renormalization coefficients by matching a series in L=+1/2L=\ell+1/2 to the large-LL behavior of the expression for ΔU\Delta U. The non-radiative parts of the perturbed metric associated with changes in mass and angular momentum are calculated in the Schwarzschild gauge

    de Finetti reductions for correlations

    Full text link
    When analysing quantum information processing protocols one has to deal with large entangled systems, each consisting of many subsystems. To make this analysis feasible, it is often necessary to identify some additional structure. de Finetti theorems provide such a structure for the case where certain symmetries hold. More precisely, they relate states that are invariant under permutations of subsystems to states in which the subsystems are independent of each other. This relation plays an important role in various areas, e.g., in quantum cryptography or state tomography, where permutation invariant systems are ubiquitous. The known de Finetti theorems usually refer to the internal quantum state of a system and depend on its dimension. Here we prove a different de Finetti theorem where systems are modelled in terms of their statistics under measurements. This is necessary for a large class of applications widely considered today, such as device independent protocols, where the underlying systems and the dimensions are unknown and the entire analysis is based on the observed correlations.Comment: 5+13 pages; second version closer to the published one; new titl

    Quantum Lattice Fluctuations and Luminescence in C_60

    Full text link
    We consider luminescence in photo-excited neutral C_60 using the Su-Schrieffer-Heeger model applied to a single C_60 molecule. To calculate the luminescence we use a collective coordinate method where our collective coordinate resembles the displacement of the carbon atoms of the Hg(8) phonon mode and extrapolates between the ground state "dimerisation" and the exciton polaron. There is good agreement for the existing luminescence peak spacing and fair agreement for the relative intensity. We predict the existence of further peaks not yet resolved in experiment. PACS Numbers : 78.65.Hc, 74.70.Kn, 36.90+

    The Narrow-band Ultraviolet Imaging Experiment for Wide-field Surveys (NUVIEWS)-I: Dust scattered continuum

    Get PDF
    We report on the first results of the Narrow-band Ultraviolet Imaging Experiment for Wide-field Surveys (NUVIEWS), a sounding rocket experiment designed to map the far-ultraviolet background in four narrow bands. This is the first imaging measurement of the UV background to cover a substantial fraction of the sky. The narrow band responses (145, 155, 161, and 174 nm, 7-10 nm wide) allow us to isolate background contributions from dust-scattered continuum, H2 fluorescence, and CIV 155 nm emission. In our first flight, we mapped one quarter of the sky with 5-10 arcminute imaging resolution. In this paper, we model the dominant contribution of the background, dust-scattered continuum. Our data base consists of a map of over 10,000 sq. degrees with 468 independent measurements in 6.25 by 6.25 sq. degree bins. Stars and instrumental stellar halos are removed from the data. We present a map of the continuum background obtained in the 174 nm telescope. We use a model that follows Witt, Friedman, and Sasseen (1997: WFS) to account for the inhomogeneous radiation field and multiple scattering effects in clouds. We find that the dust in the diffuse interstellar medium displays a moderate albedo (a=0.55+/-0.1) and highly forward scattering phase function parameter (g=0.75+/-0.1) over a large fraction of the sky, similar to dust in star forming regions. We also have discovered a significant variance from the model.Comment: 16 pages, 3 ps figures, submitted to Astrophysical Journal Letter

    Whence the odd-even staggering in nuclear binding?

    Full text link
    We explore the systematics of odd-even mass staggering with a view to identifying the physical mechanisms responsible. The BCS pairing and mean field contributions have A- and number parity dependencies which can help disentangle the different contributions. This motivates the two-term parametrization c_1 + c_2/A as a theoretically based alternative to the inverse power form traditionally used to fit odd-even mass differences. Assuming that the A-dependence of the BCS pairing is weak, we find that mean-field contributions are dominant below mass number A~40 while BCS pairing dominates in heavier nuclei.Comment: 5 pages, 3 table

    Iron Deficiency Anemia: Focus on Infectious Diseases in Lesser Developed Countries

    Get PDF
    Iron deficiency anemia is thought to affect the health of more than one billion people worldwide, with the greatest burden of disease experienced in lesser developed countries, particularly women of reproductive age and children. This greater disease burden is due to both nutritional and infectious etiologies. Individuals in lesser developed countries have diets that are much lower in iron, less access to multivitamins for young children and pregnant women, and increased rates of fertility which increase demands for iron through the life course. Infectious diseases, particularly parasitic diseases, also lead to both extracorporeal iron loss and anemia of inflammation, which decreases bioavailability of iron to host tissues. This paper will address the unique etiologies and consequences of both iron deficiency anemia and the alterations in iron absorption and distribution seen in the context of anemia of inflammation. Implications for diagnosis and treatment in this unique context will also be discussed

    Dual Fronts Propagating into an Unstable State

    Full text link
    The interface between an unstable state and a stable state usually develops a single confined front travelling with constant velocity into the unstable state. Recently, the splitting of such an interface into {\em two} fronts propagating with {\em different} velocities was observed numerically in a magnetic system. The intermediate state is unstable and grows linearly in time. We first establish rigorously the existence of this phenomenon, called ``dual front,'' for a class of structurally unstable one-component models. Then we use this insight to explain dual fronts for a generic two-component reaction-diffusion system, and for the magnetic system.Comment: 19 pages, Postscript, A

    A dynamical description of neutron star crusts

    Full text link
    Neutron Stars are natural laboratories where fundamental properties of matter under extreme conditions can be explored. Modern nuclear physics input as well as many-body theories are valuable tools which may allow us to improve our understanding of the physics of those compact objects. In this work the occurrence of exotic structures in the outermost layers of neutron stars is investigated within the framework of a microscopic model. In this approach the nucleonic dynamics is described by a time-dependent mean field approach at around zero temperature. Starting from an initial crystalline lattice of nuclei at subnuclear densities the system evolves toward a manifold of self-organized structures with different shapes and similar energies. These structures are studied in terms of a phase diagram in density and the corresponding sensitivity to the isospin-dependent part of the equation of state and to the isotopic composition is investigated.Comment: 8 pages, 5 figures, conference NN201

    Innermost stable circular orbits around relativistic rotating stars

    Get PDF
    We investigate the innermost stable circular orbit (ISCO) of a test particle moving on the equatorial plane around rotating relativistic stars such as neutron stars. First, we derive approximate analytic formulas for the angular velocity and circumferential radius at the ISCO making use of an approximate relativistic solution which is characterized by arbitrary mass, spin, mass quadrupole, current octapole and mass 242^4-pole moments. Then, we show that the analytic formulas are accurate enough by comparing them with numerical results, which are obtained by analyzing the vacuum exterior around numerically computed geometries for rotating stars of polytropic equation of state. We demonstrate that contribution of mass quadrupole moment for determining the angular velocity and, in particular, the circumferential radius at the ISCO around a rapidly rotating star is as important as that of spin.Comment: 12 pages, 2 figures, accepted for publication in Phys. Rev.
    corecore