19,944 research outputs found

    The scalar complex potential and the Aharonov-Bohm effect

    Full text link
    The Aharonov-Bohm effect is traditionally attributed to the effect of the electromagnetic 4-potential AA, even in regions where both the electric field E\mathbf{E} and the magnetic field B\mathbf{B} are zero. The AB effect reveals that multiple-valued functions play a crucial role in the description of an electromagnetic field. We argue that the quantity measured by AB experiments is a difference in values of a multiple-valued complex function, which we call a complex potential or {pre-potential. We show that any electromagnetic field can be described by this pre-potential, and give an explicit expression for the electromagnetic field tensor through this potential. The pre-potential is a modification of the two scalar potential functions.Comment: 10 pages 2 figure

    Fixed subgroups are compressed in surface groups

    Get PDF
    For a compact surface Σ\Sigma (orientable or not, and with boundary or not) we show that the fixed subgroup, FixB\operatorname{Fix} B, of any family BB of endomorphisms of π1(Σ)\pi_1(\Sigma) is compressed in π1(Σ)\pi_1(\Sigma) i.e., rk((FixB)H)rk(H)\operatorname{rk}((\operatorname{Fix} B)\cap H)\leq \operatorname{rk}(H) for any subgroup FixBHπ1(Σ)\operatorname{Fix} B \leq H \leq \pi_1(\Sigma). On the way, we give a partial positive solution to the inertia conjecture, both for free and for surface groups. We also investigate direct products, GG, of finitely many free and surface groups, and give a characterization of when GG satisfies that rk(Fixϕ)rk(G)\operatorname{rk}(\operatorname{Fix} \phi) \leq \operatorname{rk}(G) for every ϕAut(G)\phi \in Aut(G)

    Reactions at Polymer Interfaces: Transitions from Chemical to Diffusion-Control and Mixed Order Kinetics

    Full text link
    We study reactions between end-functionalized chains at a polymer-polymer interface. For small chemical reactivities (the typical case) the number of diblocks formed, RtR_t, obeys 2nd order chemically controlled kinetics, RttR_t \sim t, until interfacial saturation. For high reactivities (e.g. radicals) a transition occurs at short times to 2nd order diffusion-controlled kinetics, with Rtt/lntR_t \sim t/\ln t for unentangled chains while t/lntt/\ln t and t1/2t^{1/2} regimes occur for entangled chains. Long time kinetics are 1st order and controlled by diffusion of the more dilute species to the interface: Rtt1/4R_t \sim t^{1/4} for unentangled cases, while Rtt1/4R_t \sim t^{1/4} and t1/8t^{1/8} regimes arise for entangled systems. The final 1st order regime is governed by center of gravity diffusion, Rtt1/2R_t \sim t^{1/2}.Comment: 11 pages, 3 figures, uses poliface.sty, minor changes, to appear in Europhysics Letter

    Occurrence of normal and anomalous diffusion in polygonal billiard channels

    Full text link
    From extensive numerical simulations, we find that periodic polygonal billiard channels with angles which are irrational multiples of pi generically exhibit normal diffusion (linear growth of the mean squared displacement) when they have a finite horizon, i.e. when no particle can travel arbitrarily far without colliding. For the infinite horizon case we present numerical tests showing that the mean squared displacement instead grows asymptotically as t log t. When the unit cell contains accessible parallel scatterers, however, we always find anomalous super-diffusion, i.e. power-law growth with an exponent larger than 1. This behavior cannot be accounted for quantitatively by a simple continuous-time random walk model. Instead, we argue that anomalous diffusion correlates with the existence of families of propagating periodic orbits. Finally we show that when a configuration with parallel scatterers is approached there is a crossover from normal to anomalous diffusion, with the diffusion coefficient exhibiting a power-law divergence.Comment: 9 pages, 15 figures. Revised after referee reports: redrawn figures, additional comments. Some higher quality figures available at http://www.fis.unam.mx/~dsander

    On wormholes with arbitrarily small quantities of exotic matter

    Full text link
    Recently several models of traversable wormholes have been proposed which require only arbitrarily small amounts of negative energy to hold them open against self-collapse. If the exotic matter is assumed to be provided by quantum fields, then quantum inequalities can be used to place constraints on the negative energy densities required. In this paper, we introduce an alternative method for obtaining constraints on wormhole geometries, using a recently derived quantum inequality bound on the null-contracted stress-energy averaged over a timelike worldline. The bound allows us to perform a simplified analysis of general wormhole models, not just those with small quantities of exotic matter. We then use it to study, in particular, the models of Visser, Kar, and Dadhich (VKD) and the models of Kuhfittig. The VKD models are constrained to be either submicroscopic or to have a large discrepancy between throat size and curvature radius. A recent model of Kuhfittig is shown to be non-traversable. This is due to the fact that the throat of his wormhole flares outward so slowly that light rays and particles, starting from outside the throat, require an infinite lapse of affine parameter to reach the throat.Comment: 30 pages, 2 figure

    Anomalous Hall Effect in Ferromagnetic Semiconductors in the Hopping Transport Regime

    Full text link
    We present a theory of the Anomalous Hall Effect (AHE) in ferromagnetic (Ga,Mn)As in the regime when conduction is due to phonon-assisted hopping of holes between localized states in the impurity band. We show that the microscopic origin of the anomalous Hall conductivity in this system can be attributed to a phase that a hole gains when hopping around closed-loop paths in the presence of spin-orbit interactions and background magnetization of the localized Mn moments. Mapping the problem to a random resistor network, we derive an analytic expression for the macroscopic anomalous Hall conductivity σxyAH\sigma_{xy}^{AH}. We show that σxyAH\sigma_{xy}^{AH} is proportional to the first derivative of the density of states ϱ(ϵ)\varrho(\epsilon) and thus can be expected to change sign as a function of impurity band filling. We also show that σxyAH\sigma_{xy}^{AH} depends on temperature as the longitudinal conductivity σxx\sigma_{xx} within logarithmic accuracy.Comment: 4 pages, 1 eps figure, final versio
    corecore