17 research outputs found

    Magnetic Resonance Imaging in Clinical Trials of Diabetic Kidney Disease

    Get PDF
    Chronic kidney disease (CKD) associated with diabetes mellitus (DM) (known as diabetic kidney disease, DKD) is a serious and growing healthcare problem worldwide. In DM patients, DKD is generally diagnosed based on the presence of albuminuria and a reduced glomerular filtration rate. Diagnosis rarely includes an invasive kidney biopsy, although DKD has some characteristic histological features, and kidney fibrosis and nephron loss cause disease progression that eventually ends in kidney failure. Alternative sensitive and reliable non-invasive biomarkers are needed for DKD (and CKD in general) to improve timely diagnosis and aid disease monitoring without the need for a kidney biopsy. Such biomarkers may also serve as endpoints in clinical trials of new treatments. Non-invasive magnetic resonance imaging (MRI), particularly multiparametric MRI, may achieve these goals. In this article, we review emerging data on MRI techniques and their scientific, clinical, and economic value in DKD/CKD for diagnosis, assessment of disease pathogenesis and progression, and as potential biomarkers for clinical trial use that may also increase our understanding of the efficacy and mode(s) of action of potential DKD therapeutic interventions. We also consider how multi-site MRI studies are conducted and the challenges that should be addressed to increase wider application of MRI in DKD

    Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper.

    Get PDF
    Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive method sensitive to local water motion in the tissue. As a tool to probe the microstructure, including the presence and potentially the degree of renal fibrosis, DWI has the potential to become an effective imaging biomarker. The aim of this review is to discuss the current status of renal DWI in diffuse renal diseases. DWI biomarkers can be classified in the following three main categories: (i) the apparent diffusion coefficient-an overall measure of water diffusion and microcirculation in the tissue; (ii) true diffusion, pseudodiffusion and flowing fraction-providing separate information on diffusion and perfusion or tubular flow; and (iii) fractional anisotropy-measuring the microstructural orientation. An overview of human studies applying renal DWI in diffuse pathologies is given, demonstrating not only the feasibility and intra-study reproducibility of DWI but also highlighting the need for standardization of methods, additional validation and qualification. The current and future role of renal DWI in clinical practice is reviewed, emphasizing its potential as a surrogate and monitoring biomarker for interstitial fibrosis in chronic kidney disease, as well as a surrogate biomarker for the inflammation in acute kidney diseases that may impact patient selection for renal biopsy in acute graft rejection. As part of the international COST (European Cooperation in Science and Technology) action PARENCHIMA (Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease), aimed at eliminating the barriers to the clinical use of functional renal magnetic resonance imaging, this article provides practical recommendations for future design of clinical studies and the use of renal DWI in clinical practice.EU COST Programm

    Renal fibrosis assessment by diffusion-weighted magnetic resonance Imaging

    No full text
    The goal of this PhD was to improve kidney fibrosis assessment by diffusion-weighted imaging (DWI). A respiratory implementation of the RESOLVE sequence improved significantly the image quality by reducing susceptibility effects and enhancing cortico-medullary Apparent Diffusion Coefficient (ADC) differentiation. In light of that fact, RESOLVE was tested in well-controlled models of fibrosis to separate pathological from healthy kidneys. These results were validated afterward in a cohort of kidney allograft patients. ∆ADC from RESOLVE had a stronger correlation to fibrosis than ∆ADC from classical single-shot Echo-Planar DWI. Most importantly, a negative ∆ADC was measured for all patients harboring more than 40% fibrosis, opening the possibility for a diagnostic threshold. In a second part, a motion compensation method was provided to remove signal dropout and the overestimation of ADC. By addressing and minimizing the main sources of the initial poor DW image quality, it was possible to improve renal fibrosis assessment

    Diagnosis and assessment of renal fibrosis: the state of the art

    No full text
    Chronic kidney disease (CKD) is defined as an alteration of kidney function and/or structure lasting for more than 3 months and is a major public health issue. Histologically, the severity of CKD correlates with the magnitude of kidney cortical interstitial fibrosis. Estimation of kidney fibrosis is crucial to assess prognosis and guide therapy in both native and allograft kidneys. Biopsy is currently the gold standard for assessing fibrosis with histological techniques. Although this procedure has become safer over recent years, complications and limitations remain. Given these restrictions, new, noninvasive techniques are necessary for the evaluation and follow-up of CKD patients. Radiological methods such as ultrasound and magnetic resonance imaging are emerging for assessment kidney fibrosis. These two techniques have advantages but also limitations. In addition to radiological assessment of fibrosis, urinary and plasma biomarkers are being developed and tested as predictive tools for histological lesions in the kidney. This article reviews the current evidence for these novel techniques in the evaluation of kidney interstitial fibrosis

    Albuminuria-lowering effect of dapagliflozin, exenatide, and their combination in patients with type 2 diabetes:A randomized cross-over clinical study

    Get PDF
    Aim: To evaluate the albuminuria-lowering effect of dapagliflozin, exenatide, and the combination of dapagliflozin and exenatide in patients with type 2 diabetes and microalbuminuria or macroalbuminuria.Methods: Participants with type 2 diabetes, an estimated glomerular filtration rate (eGFR) of more than 30 ml/min/1.73m2 and an urinary albumin: creatinine ratio (UACR) of more than 3.5 mg/mmol and 100 mg/mmol or less completed three 6-week treatment periods, during which dapagliflozin 10 mg/d, exenatide 2 mg/wk and both drugs combined were given in random order. The primary outcome was the percentage change in UACR. Secondary outcomes included blood pressure, HbA1c, body weight, extracellular volume, fractional lithium excretion and renal haemodynamic variables as determined by magnetic resonance imaging.Results: We enrolled 20 patients, who completed 53 treatment periods in total. Mean percentage change in UACR from baseline was –21.9% (95% CI: –34.8% to –6.4%) during dapagliflozin versus –7.7% (95% CI: –23.5% to 11.2%) during exenatide and –26.0% (95% CI: –38.4% to –11.0%) during dapagliflozin-exenatide treatment. No correlation was observed in albuminuria responses between the different treatments. Numerically greater reductions in systolic blood pressure, body weight and eGFR were observed during dapagliflozin-exenatide treatment compared with dapagliflozin or exenatide alone. Renal blood flow and effective renal plasma flow (ERPF) did not significantly change with either treatment regimen. However, all but four and two patients in the dapagliflozin and dapagliflozin-exenatide groups, respectively, showed reductions in ERPF. The filtration fraction did not change during treatment with dapagliflozin or exenatide, and decreased during dapagliflozin-exenatide treatment (–1.6% [95% CI: –3.2% to –0.01%]; P =.048).Conclusions: In participants with type 2 diabetes and albuminuria, treatment with dapagliflozin, exenatide and dapagliflozin-exenatide reduced albuminuria, with a numerically larger reduction in the combined dapagliflozin-exenatide treatment group.</p

    Albuminuria-lowering effect of dapagliflozin, exenatide, and their combination in patients with type 2 diabetes:A randomized cross-over clinical study

    Get PDF
    Aim: To evaluate the albuminuria-lowering effect of dapagliflozin, exenatide, and the combination of dapagliflozin and exenatide in patients with type 2 diabetes and microalbuminuria or macroalbuminuria.Methods: Participants with type 2 diabetes, an estimated glomerular filtration rate (eGFR) of more than 30 ml/min/1.73m2 and an urinary albumin: creatinine ratio (UACR) of more than 3.5 mg/mmol and 100 mg/mmol or less completed three 6-week treatment periods, during which dapagliflozin 10 mg/d, exenatide 2 mg/wk and both drugs combined were given in random order. The primary outcome was the percentage change in UACR. Secondary outcomes included blood pressure, HbA1c, body weight, extracellular volume, fractional lithium excretion and renal haemodynamic variables as determined by magnetic resonance imaging.Results: We enrolled 20 patients, who completed 53 treatment periods in total. Mean percentage change in UACR from baseline was –21.9% (95% CI: –34.8% to –6.4%) during dapagliflozin versus –7.7% (95% CI: –23.5% to 11.2%) during exenatide and –26.0% (95% CI: –38.4% to –11.0%) during dapagliflozin-exenatide treatment. No correlation was observed in albuminuria responses between the different treatments. Numerically greater reductions in systolic blood pressure, body weight and eGFR were observed during dapagliflozin-exenatide treatment compared with dapagliflozin or exenatide alone. Renal blood flow and effective renal plasma flow (ERPF) did not significantly change with either treatment regimen. However, all but four and two patients in the dapagliflozin and dapagliflozin-exenatide groups, respectively, showed reductions in ERPF. The filtration fraction did not change during treatment with dapagliflozin or exenatide, and decreased during dapagliflozin-exenatide treatment (–1.6% [95% CI: –3.2% to –0.01%]; P =.048).Conclusions: In participants with type 2 diabetes and albuminuria, treatment with dapagliflozin, exenatide and dapagliflozin-exenatide reduced albuminuria, with a numerically larger reduction in the combined dapagliflozin-exenatide treatment group.</p

    Albuminuria-lowering effect of dapagliflozin, exenatide, and their combination in patients with type 2 diabetes:A randomized cross-over clinical study

    Get PDF
    Aim: To evaluate the albuminuria-lowering effect of dapagliflozin, exenatide, and the combination of dapagliflozin and exenatide in patients with type 2 diabetes and microalbuminuria or macroalbuminuria.Methods: Participants with type 2 diabetes, an estimated glomerular filtration rate (eGFR) of more than 30 ml/min/1.73m2 and an urinary albumin: creatinine ratio (UACR) of more than 3.5 mg/mmol and 100 mg/mmol or less completed three 6-week treatment periods, during which dapagliflozin 10 mg/d, exenatide 2 mg/wk and both drugs combined were given in random order. The primary outcome was the percentage change in UACR. Secondary outcomes included blood pressure, HbA1c, body weight, extracellular volume, fractional lithium excretion and renal haemodynamic variables as determined by magnetic resonance imaging.Results: We enrolled 20 patients, who completed 53 treatment periods in total. Mean percentage change in UACR from baseline was –21.9% (95% CI: –34.8% to –6.4%) during dapagliflozin versus –7.7% (95% CI: –23.5% to 11.2%) during exenatide and –26.0% (95% CI: –38.4% to –11.0%) during dapagliflozin-exenatide treatment. No correlation was observed in albuminuria responses between the different treatments. Numerically greater reductions in systolic blood pressure, body weight and eGFR were observed during dapagliflozin-exenatide treatment compared with dapagliflozin or exenatide alone. Renal blood flow and effective renal plasma flow (ERPF) did not significantly change with either treatment regimen. However, all but four and two patients in the dapagliflozin and dapagliflozin-exenatide groups, respectively, showed reductions in ERPF. The filtration fraction did not change during treatment with dapagliflozin or exenatide, and decreased during dapagliflozin-exenatide treatment (–1.6% [95% CI: –3.2% to –0.01%]; P =.048).Conclusions: In participants with type 2 diabetes and albuminuria, treatment with dapagliflozin, exenatide and dapagliflozin-exenatide reduced albuminuria, with a numerically larger reduction in the combined dapagliflozin-exenatide treatment group.</p

    Improvement of renal diffusion-weighted magnetic resonance imaging with readout-segmented echo-planar imaging at 3T.

    No full text
    To assess the feasibility of a respiratory-gated implementation of readout-segmented SE-EPI (RESOLVE) for renal diffusion-weighted imaging (DWI) by comparison with single-shot SE-EPI (ss-EPI) in a phantom, healthy volunteers and chronic kidney disease (CKD) patients

    Dynamic Volume Assessment of Hepatocellular Carcinoma in Rat Livers Using a Clinical 3T MRI and Novel Segmentation

    No full text
    In vivo liver cancer research commonly uses rodent models. One of the limitations of such models is the lack of accurate and reproducible endpoints for a dynamic assessment of growing tumor nodules. The aim of this study was to validate a noninvasive, true volume segmentation method using two rat hepatocellular carcinoma (HCC) models, correlating magnetic resonance imaging (MRI) with histological volume measurement, and with blood levels of α-fetoprotein

    4D cardiac imaging at clinical 3.0T provides accurate assessment of murine myocardial function and viability

    No full text
    We validate a 4D strategy tailored for 3T clinical systems to simultaneously quantify function and infarct size in wild type mice after ischemia/reperfusion, with improved spatial and temporal resolution by comparison to previous published protocols using clinical field MRI systems
    corecore