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Abstract: Chronic kidney disease (CKD) associated with diabetes mellitus (DM) (known as diabetic
kidney disease, DKD) is a serious and growing healthcare problem worldwide. In DM patients, DKD
is generally diagnosed based on the presence of albuminuria and a reduced glomerular filtration
rate. Diagnosis rarely includes an invasive kidney biopsy, although DKD has some characteristic
histological features, and kidney fibrosis and nephron loss cause disease progression that eventually
ends in kidney failure. Alternative sensitive and reliable non-invasive biomarkers are needed for
DKD (and CKD in general) to improve timely diagnosis and aid disease monitoring without the need
for a kidney biopsy. Such biomarkers may also serve as endpoints in clinical trials of new treatments.
Non-invasive magnetic resonance imaging (MRI), particularly multiparametric MRI, may achieve
these goals. In this article, we review emerging data on MRI techniques and their scientific, clinical,
and economic value in DKD/CKD for diagnosis, assessment of disease pathogenesis and progression,
and as potential biomarkers for clinical trial use that may also increase our understanding of the
efficacy and mode(s) of action of potential DKD therapeutic interventions. We also consider how
multi-site MRI studies are conducted and the challenges that should be addressed to increase wider
application of MRI in DKD.

Keywords: magnetic resonance imaging; chronic kidney disease; diabetic kidney disease; kidney
failure; clinical trials; surrogate endpoints; non-invasive biomarkers; multiparametric magnetic
resonance imaging

1. Introduction

Chronic kidney disease (CKD) associated with diabetes mellitus (DM) is known as
diabetic kidney disease (DKD) and occurs in approximately 30–40% of people with type
2 DM (T2DM) [1,2]. The global DKD burden is expected to rise in line with the increasing
prevalence of T2DM [1,2]. This represents a serious and growing healthcare problem
since DKD is associated with increased morbidity and mortality and is a leading cause
of kidney failure (KF) worldwide that requires kidney replacement therapy (dialysis or
transplantation) [1,2].

Early identification of people at high risk of developing DKD and its progression can
facilitate timely treatment intervention and prevent KF; however, predicting DKD evolution
remains difficult because its progression is so variable, particularly in people with T2DM [2].
Current biomarkers do not provide insights into underlying DKD pathophysiology, the
degree of anatomical damage, nor allow risk stratification. There is a need for novel,
sensitive, and reliable non-invasive biomarkers that can improve timely diagnosis and
prognosis for patients, as well as aid disease monitoring, and can also serve as bio-markers
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in clinical trials of new treatments for DKD. This may involve the dynamic and rapidly
evolving area of MRI.

2. Diagnosing DKD

In clinical practice, a diagnosis of DKD as a cause of CKD in DM is based on a reduced
calculated or estimated glomerular filtration rate (eGFR) in the presence of albuminuria.
eGFR is calculated using a formula based on serum creatinine and/or cystatin C. Albumin-
uria is generally considered a hallmark of DKD, but it is not exclusive to DM and occurs in
many forms of CKD. Despite recent advances, there are no established biomarkers to moni-
tor kidney disease progression except for eGFR and albuminuria, and even these provide
only a rough guide to the extent of kidney damage [3]. The measured glomerular filtration
rate (mGFR) using plasma clearance of filtration markers is a more accurate measure of
kidney function than eGFR but is time-consuming and cumbersome for both screening and
routine use in ambulatory care [4].

The spot urine albumin to creatinine concentration ratio (UACR) is a reasonable mea-
sure of albumin excretion at a population level. However, at an individual level the UACR
remains highly variable and is sensitive to acute haemodynamic changes that affect the
GFR [5], as seen typically when starting antagonists of the renin–angiotensin–aldosterone
system (angiotensin-converting-enzyme inhibitors (ACEis), angiotensin receptor blockers
(ARBs), or mineralocorticoid receptor antagonists (MRAs)), as well as sodium-glucose
cotransporter 2 inhibitors (SGLT2i), all of which can reduce UACR and cause an early
reduction in GFR.

Kidney biopsy is the current “gold standard” for diagnosing kidney disease. The
extent of tubulointerstitial fibrosis (and not glomerular pathology) seen in a renal biopsy
specimen from a patient with DKD is the best predictor of loss of kidney function, disease
progression, and likely outcome, whereas GFR per se does not accurately reflect the degree
of fibrosis [6,7]. The procedure, however, is invasive and carries a risk for patients of
both bleeding, especially in those with late-stage (4/5) DKD and small kidneys, and, in
very rare cases, even loss of a kidney. Kidney biopsy is also associated with a risk of
bias because of the highly selected patients in whom it can be clinically justified and
performed, as well as with sampling error because the kidney is not a homogeneous
structure. In fact, DKD patients rarely undergo a kidney biopsy for diagnosis or monitoring
unless there are unusual clinical features, such as heavy proteinuria or a sudden and
unexpected decline in eGFR [8]. Due to these limitations, kidney biopsy is not suitable
for long-term serial monitoring of disease progression or a response to therapy [9]. Thus,
DKD patients are still mostly staged prognostically on the basis of both eGFR and the
presence and level of albuminuria (from G1, A1, normal eGFR, no albuminuria to G5, A3,
eGFR < 15 mL/min/1.73 m2 and albuminuria > 300 mg/gCr) [10]. Importantly, significant
kidney fibrosis can occur without a detectable change in GFR [6,11] because the kidney
can partially compensate for any loss of function (in part through nephron hyperfiltration),
which can complicate diagnosis.

Other clinical methods of assessing kidney disease include ultrasound imaging, con-
ventional computer tomography (CT), and, occasionally, magnetic resonance imaging
(MRI) [12]. In clinical practice, however, these standard imaging methods tend to be
used to exclude other diagnoses (e.g., renal carcinoma or atherosclerosis) rather than eval-
uate disease progression per se and currently are of limited value prognostically or in
patient stratification.

An updated definition and classification of CKD that includes DKD was set out in
the Kidney Disease Improving Global Outcomes (KDIGO) guidelines in 2012 [10] with the
stages of CKD defined according to the GFR and albuminuria categories [13].
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3. DKD Phenotypes and Stages of Kidney Disease

The original description of DKD highlighted that renal size is markedly increased with
a concomitant increase in glomerular filtration (GFR) in both humans and experimental
models early in T2DM [14]. These changes may stem from metabolic effects that are only
slowly reversible since insulin treatment can lead to a reduction in both renal size and GFR
over 3 months [14].

Various DKD phenotypes are well recognized, and other pathways to KF independent
of albuminuria have been proposed, indicating different pathophysiologies not readily
detected by conventional biomarkers [15,16]. Beyond the classic albuminuric presentation,
a non-proteinuric phenotype of DKD occurs in 20–40% of T2DM patients; this phenotype
progresses more slowly than that in patients with albuminuria yet still carries a greater risk
of death and major cardiovascular outcomes than in patients without DKD [17]. Typically,
non-albuminuric DKD is characterized by tubulointerstitial injury and fibrosis, which
suggests that the histological injury occurs in the vascular and interstitial compartments
rather than in the glomeruli seen in albuminuric DKD [18].

Importantly, people with T2DM may also have other causes of CKD with or without
the typical histological features of DKD. In a broader sense, all the components of the
metabolic syndrome (impaired fasting glucose, elevated blood pressure, obesity, increased
triglycerides, and reduced HDL-C) are known to be individually associated with CKD in
varying degrees with elevated blood pressure showing the strongest association [19]. Mixed
comorbidities occur and since the diagnostic strategy is one of exclusion, patients may be
diagnosed as having DKD, but have comorbidities or a disease unrelated to DKD that also
affect kidney function. Metabolic dysfunction and obesity drive multi-organ dysfunction,
including non-alcoholic fatty liver and myocardial diastolic dysfunction, which ultimately
lead to end-organ dysfunction, such as CKD [20–22]. The cause of progression to end-organ
failure and KF in CKD is multifactorial; pathological backgrounds are likely to overlap yet
can also be uniquely associated with different rates of progression (Figure 1). Moreover,
dysfunction of one organ, such as the kidney, can negatively impact other organs and lead
to further organ failure, for example, the heart [23].
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Figure 1. The Course to End-Organ Failure with Overlapping End-Organ Dysfunction. Individual
differences in overlapping disease states exemplified in three different patients and their progression
from organ dysfunction to end-stage organ disease, for example, microalbuminuria and reduced GFR
to CKD. CKD = chronic kidney disease; GFR = glomerular filtration rate; HFpEF = heart failure with
preserved ejection fraction; NAFL = non-alcoholic fatty liver; NASH = non-alcoholic steatohepatitis.
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Episodes of acute kidney injury (AKI) in patients with DM and DKD are also thought to
contribute to disease progression and eGFR decline [24]. Clinical AKI is defined by KDIGO
as an increase in serum creatinine of >0.3 mg/dL (>26 µmol/L) within 48 h or an increase
to more than 1.5 times the baseline serum creatinine within 7 days [25]. Many, but not all,
patients eventually recover their baseline kidney function over days or weeks; however,
even a seemingly recovered episode of AKI carries an increased risk of developing CKD
later, the so-called “AKI to CKD transition”, especially in patients already known to have
some impairment of kidney function with or without pre-existing albuminuria [24,26,27].

A major disconnect between glomerular function and renal structure is well described,
such that greater than 50% loss of functional mass is required for an increase in serum
creatinine [6]. Given that the prevalence of overt CKD in most populations is at least
10% [8,28], there is likely to be an even greater prevalence of subclinical CKD, defined as
severe parenchymal damage in the presence of a normal serum creatinine level. Thus, a
return to previous or normal creatinine-baseline values after AKI provides no insight into
how much acute parenchymal damage has been sustained [6].

4. Endpoints for Clinical Trials in DKD

Compared with other clinical specialties, such as cardiology, until recently, relatively
few large-scale clinical trials have been conducted in nephrology [29], and these are usually
in a small number of selected patients and often those on kidney replacement therapy
(i.e., dialysis or transplantation). One reason is that drug approval and registration regula-
tory bodies require clinically meaningful clinical trial endpoints in Phase 3 to demonstrate
the efficacy of a treatment and reflect how a patient feels, functions, and survives. End-
points can be objective measures, for example, a clinical sign, and/or subjective, such as
quality of life measures [30].

Following a landmark publication [31] as part of a joint working group with the
National Kidney Foundation (NSF) and FDA in the US and the European Medicines
Agency (EMA), a proposal was made to use a 30% reduction in albuminuria from baseline
at 6 months and/or a reduction in eGFR slope decline of 0.5–1 mL/min/1.73 m2 over
2 years as surrogate endpoints for efficacy in intervention trials in DKD/CKD. This was
based on an extensive series of meta-analyses of previous observational and treatment
intervention studies in DKD/CKD [32,33]. While both the FDA (more so) and EMA have
been broadly supportive of these new measures as surrogates [34,35], neither endpoint has
been accepted yet as an approved endpoint for final drug registration in lieu of the “hard”
renal endpoints of death, dialysis, or transplantation.

Use of albuminuria or proteinuria reduction is looked on more favourably as an
endpoint in smaller and shorter Phase 2 trials in patients who have significant albuminuria
or proteinuria [36,37]. Phase 2 clinical trials are conducted in around one hundred patients
with the target disease to define the most efficacious dose, delivery route, and frequency of
administration, as well as safety. Early reductions in albuminuria (or proteinuria) are being
widely used to test new molecular entities in DKD, even for as short a time as 3 months
of treatment duration. However, selecting albuminuria as the endpoint excludes non-
proteinuric DKD patients from Phase 2 clinical trials. These patients progress more slowly
than those with albuminuria/proteinuria [15] yet comprise up to 40% of those reaching KF
and often have never undergone a kidney biopsy [38]. As, typically, only high-risk patients
or “fast progressors” are selected for early clinical trials, a significant proportion the DKD
patient population is excluded until Phase 3, which can introduce bias and account for
poorer efficacy seen in Phase 3 clinical trials [10].

Choosing endpoints that are well suited to short-term and exploratory Phase 2 clinical
trials in relatively small numbers of representative patients is crucial. Ideally, these chosen
endpoints would also have an evidence base linking the biomarker to a relevant clinical
outcome of interest. This is the major challenge confronting the early clinical development
of all drugs and particularly in finding effective treatments for DKD or CKD, neither of
which are strictly single diseases. This also explains the current focus on identifying easily
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measurable “biomarkers” that can be used to stratify patients based on an underlying
disease mechanism (diagnostic), risk of disease progression (prognostic), likely response
to a given treatment (predictive), and treatment efficacy to enrich a trial with the optimal
patient population. However, such novel biomarkers are still exploratory; apart from using
albuminuria and the eGFR slope for efficacy, the soluble biomarkers currently approved
for use in clinical trials are for safety monitoring only.

New drugs, including the SGLT2i and MRAs, have revolutionized DKD treatment and
help to preserve kidney function [39]. Better biomarkers, however, are needed to predict
or to confirm a response to a given treatment and to identify both novel treatment targets
and mechanisms of action of therapeutic interventions [40]. While progress has been made
in identifying some novel soluble biomarkers in blood or urine, there are still no suitable
agreed biomarkers [41].

5. A Potential Role for and Opportunities with MRI

Interest has turned recently to the use and potential of MRI and the detailed structural
and functional readouts it can provide to non-invasively assess and quantify pathophys-
iological changes in CKD [42–44] (Figure 2). As one of the foremost imaging techniques
to aid medical diagnoses, MRI is the method of choice for diseased (and normal) soft
tissue because the contrast can be “tailored” using multiple “weighting” or “sensitization”
techniques. Thus, MRI can distinguish between tissue types and organs despite their very
similar water content. The contrast generated by these sensitization techniques reflects
aspects of the physicochemical environment of the water molecules in the tissue. Tissue
properties, such as tissue microstructure, composition, metabolism, function, and gross
morphology, can be assessed with quantitative imaging biomarkers. However, given that
DKD is usually diagnosed using a simple blood test of kidney function and, in some cases,
a spot urine albumin test, it seems unlikely that MRI will be used soon to diagnose DKD
in normal clinical practice. Rather, MRI and other imaging techniques will continue to be
used to exclude an alternative diagnosis in questionable cases.

The real scientific advantages of MRI are that unique aspects of the pathophysiology
can be quantified; the lack of exposure to ionizing radiation or radioactivity means subjects
(normal volunteers or patients) can be scanned repeatedly; in clinical trials, pre-treatment
scans allow each subject to act as their own control and can be used to screen subjects for
study inclusion. Importantly for the DKD population, renal MRI may complement or even
provide an alternative to kidney biopsies with the advantage of separate evaluation of both
kidneys in their entirety, thereby avoiding biopsy-associated sampling bias and permitting
detection of regional variations. The high-spatial detail allows both the cortex and the
medulla to be visualized. These advantages are seen in clinical trials, where MRI can help
to elucidate the mechanism of action of new drugs.

One recent advance in the MRI field is the multiparametric MRI (mpMRI) biomarker,
defined as two or more imaging biomarkers that can be used collectively or combined
to diagnose, give a prognosis, or monitor a disease. Importantly, mpMRI may provide
more comprehensive information on the macrostructure (kidney parenchyma and cor-
tex volume), haemodynamics of renal blood flow (RBF) and perfusion [45], oxygenation,
and microstructure (including kidney fibrosis and inflammation) than individual imaging
endpoints [46] (see Figure 2). mpMRI provides a variety of imaging contrasts that can
differentiate pathological from healthy tissues according to biophysical changes. Despite
known limitations in terms of biological specificity, it seems plausible that a direct observa-
tion of parenchymal changes in situ can detect disease progression well before it manifests
itself as changes in blood or urine. As a change in fibrosis is the best measure and predictor
of CKD progression, an ability to detect this non-invasively would be a major advance and
more closely related to the treatment target [47].
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Figure 2. Recommended Kidney Magnetic Resonance Imaging Endpoints. MRI biomarkers (units
of measurement) associated with kidney macrostructure, haemodynamics, oxygenation, and mi-
crostructure. A multiparametric approach comprises a composite endpoint based on several of these
parameters. Based on Makvandi et al. [48]. ADC = apparent diffusion coefficient; ASL = arterial spin
labelling; BOLD-R2* = Blood Oxygenation Level-Dependent apparent relaxation rate; EDV = end
diastolic velocity; MRI = magnetic resonance imaging; PSV = peak systolic velocity; R1 = apparent
relaxation rate; RARI = Renal Artery Resistive Index; RBF = renal blood flow.

The converging interests of MRI physicists, radiologists, nephrologists, drug de-
velopers, transplant surgeons, physiologists, and pathologists have given rise to a dy-
namic and multidisciplinary community of researchers with a common interest in renal
MRI biomarkers. The international, pan-European, multidisciplinary research network
PARENCHIMA [49] (European Cooperation in Science and Technology [COST] Action)
was founded in 2017 with the aim of eliminating key barriers to the wider evaluation,
commercial exploitation, and clinical use of renal MRI biomarkers. Its work now contin-
ues as renalmri.org (renalmri.org, accessed on 10 July 2023) and provides guidelines and
updates on MRI biomarker use in CKD. Following the fourth international meeting on
renal MRI that attracted scientists from across these disciplines (ISMRM 2021 Workshop
on Kidney MRI Biomarkers: The Route to Clinical Adoption), the broadening interest in
MRI led to the publication of several systematic reviews and consensus-based technical rec-
ommendations [45,50–61]. MRI biomarkers are also increasingly visible in the nephrology
literature [43].

6. Employing MRI Endpoints in Clinical Trials

The FDA’s Guidance for Industry Standards for Clinical Trial Imaging Endpoints [62]
represents its current thinking on the use of imaging endpoints in clinical trials intended
to support drug and biological product approval. Imaging acquisition and interpretation
standards can be divided into a medical practice standard and a clinical trial standard.
Briefly, the medical practice imaging standard may rely on an investigator’s response to a
clinical question determined by any available medical practice method, for example, “What
is a patient’s cardiac ejection fraction?” The clinical trial imaging standard specifies the
standardization of image acquisition and analysis to enhance the ability to detect a drug
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effect and to verify data integrity. Clinical trial imaging standards exceed those used in
medical practice. For diagnosis, imaging is often used to inform dichotomous diagnostic
decisions (for example, the presence of cancer = yes/no), whereas, in drug development,
the purpose is usually to monitor a change over time of a continuous variable that increases
the demand on the imaging biomarker in terms of precision and power.

The best-known example of a prognostic MRI biomarker is total kidney volume (TKV)
in autosomal dominant polycystic kidney disease. TKV is the only MRI biomarker to
have been approved by the FDA as a prognostic enrichment biomarker to select patients
for interventional clinical trials who are at higher risk for a progressive decline in renal
function [63] and is most accurately measured by MRI [64]. Apart from TKV, imaging
endpoints are not currently used as regulatory endpoints but may be used in Phase 2 studies
or mechanism of action studies conducted in Phase 3, where there is evidence to link the
biomarker with underlying biology or with clinical endpoints. There is a clear need for
new, qualified biomarkers for clinical trials that might be MRI in nature. As MRI currently
is of less value in Phase 1 studies that comprise the “first time in man” administration of a
drug to healthy human volunteers (usually males) principally to assess safety by gradual
dose escalation and evaluation of its absorption, metabolism, accumulation, and duration
of action rather than efficacy, we will focus our discussion on Phase 2 and 3 clinical studies.

Significant questions regarding MRI should be considered: will it provide unique,
decision-influencing data unobtainable by other means and/or offer higher quality infor-
mation, whether unique or not, and thus increase the precision of measurements producing
robust data using fewer subjects or shorter study durations. Moreover, cost, convenience,
time taken, and opportunity for re-analysis are important considerations in clinical trials
and the advantages of expensive, resource-intensive, and patient-demanding techniques
need to be clear and compelling.

A common hindrance to the inclusion of imaging procedures in clinical trials is cost.
In 2015–2016, the median per patient cost in pivotal clinical trials for novel therapeutic
agents approved by the FDA was USD 41,117 and USD 3562 per patient visit [65]. Intro-
ducing novel endpoints with improved repeatability into clinical trials can reduce patient
numbers and/or trial duration, thereby reducing their overall cost. Thus, the additional
cost of including imaging endpoints must be seen in relationship to the “per patient” costs
and the potential for reducing patient numbers or visits. The ability to accelerate and
render a clinical trial safer by reducing drug exposure in patients is a highly attractive
opportunity for drug development, and offering a medical read of the scan can facilitate
recruitment to a study. Ultimately, however, medical imaging needs to enhance the ability
to quantify the impact of drugs on human health compared to conventional or invasive
clinical assessments.

To date, approximately 40 publications have reported the effects of various inter-
ventions relevant to understanding the pathophysiology of DKD that have utilized renal
MRI endpoints. Interventions include water loading, loop diuretics, thiazide diuretics,
non-steroidal anti-inflammatory drugs, calcineurin inhibitors, ACEis, ARBS, direct renin
inhibitors, calcium channel blockers, norepinephrine, high- or low-salt diets, glucose,
glucagon-like peptide-1 (GLP-1) agonists, and SGLT-2i. Some of these studies have been
conducted in healthy volunteers, whereas others have been conducted in patients with
DKD, CKD, hypertension, renal artery stenosis, DM, or heart failure. We have summa-
rized a small selection of examples in Table 1. These studies show that changes in renal
MRI biomarkers after intervention can be seen with relatively few healthy volunteers or
patients and that renal MRI can measure endpoints that reflect changes in the underlying
pathophysiology after intervention.
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Table 1. Selected Intervention Studies using Renal MRI Endpoints.

Reference Intervention Subjects N MR Intervention Comments

Prasad et al.,
1996 [66]

Furosemide;
acetazolamide;
water loading

HV 7 BOLD Furosemide and water diuresis
decreased medullary R2*

Manotham et al.,
2012 [67] Olmesartan DKD; CKD; HV 19 BOLD

Olmesartan decreased R2* in
both CKD groups, but not in

HV after 60 min

Prasad et al.,
2015 [68] Furosemide CKD 59 BOLD, DWI, Volume

CKD patients had lower renal
volume, higher cortical R2*,

and lower response to
furosemide on medullary R2*

Vakilzadeh et al.,
2015 [69] Aliskiren; HCTZ HT 20 BOLD

Aliskiren and HCTZ patients
with a fall in systolic blood

pressure > 10 mmHg decreased
cortical R2* levels

Vink 2015 [70] Captopril HT 75 BOLD

The blood pressure-lowering
effect of captopril was

positively related to cortical
and medullary R2*

Vakilzadeh et al.,
2019 [71] Glucose Overweight 19 BOLD Acute hyperglycemia

decreased renal R2*

Khatir et al., 2019 [72] RAS inhibitors/
CCB; metoprolol CKD 75 PC-MRI, BOLD

Vasodilation treatment
reduced intrarenal vascular

resistance but did not affect R2*

Laursen et al.,
2021 [73] Dapagliflozin; placebo T1DM + albuminuria 15 BOLD, ASL, PC-MRI

A single dose of dapagliflozin
decreased cortical R2* without
changes in renal perfusion or

blood flow

Lee et al., 2022 [74] Empagliflozin; placebo Heart failure 105
ASL, T1, apparent

extracellular volume,
post-contrast T1, TKV

Empagliflozin reduced
perfusion (ASL) and kidney

extracellular volume. No
between-group differences in

kidney T1, TKV, or eGFR

Lin et al., 2023 [75] Liraglutide; placebo T2DM 96 Renal volume,
sinus fat volume

Renal enlargement in T2DM
can be reversed by

liraglutide treatment

Gullaksen et al.,
2023 [76]

Semaglutide; empagliflozin;
combination; or placebo T2DM + CVD risk 80 BOLD, ASL

Empagliflozin increased
medullary R2*; semaglutide

decreased perfusion in cortex
and medulla

ASL = arterial spin labelling; BOLD = blood oxygenation level-dependent; CCB = calcium channel blockers;
CKD = chronic kidney disease; CVD = cardiovascular disease; DKD = diabetic kidney disease; DWI = diffusion-
weighted imaging; eGFR = calculated glomerular filtration rate; HCTZ = hydrochlorothiazide; HT = hypertension;
HV = healthy volunteers; MRI = magnetic resonance imaging; PC-MRI = phase contrast imaging; R2* = BOLD
MRI relaxation rate; RAS = renin-angiotensin system; T1 = relaxation time/relaxation rate R1; T1DM = type 1
diabetes mellitus; T2DM = type 2 diabetes mellitus; TKV = total kidney volume.

7. MRI Methods

It is important to know which MRI parameters can detect and diagnose early kidney
injury; point reliably to a predominant underlying pathological process; predict a decline
in kidney function and the likely patient outcome; track disease progression; and monitor
treatment response. We will attempt to address these questions by reviewing the MRI
techniques currently available and their potential as renal MRI endpoints in intervention
studies (Figure 2; Table 1).

7.1. Kidney Macrostructure

Ultrasonography is often used in clinical practice to evaluate patients with CKD to
rule out potentially reversible causes; to estimate kidney size to decide whether to conduct
a renal biopsy; and to obtain prognostic measures [77]. Volume measurements made with
MRI are generally considered to be more accurate and precise than ultrasound measures.
In people with atherosclerotic renovascular disease, kidney parenchymal volume (KPV)
measured with 3D MRI was better correlated to single-kidney GFR (r = 0.86, p < 0.001) than
renal bipolar length and parenchymal and cortical thicknesses [78]. Indeed, KPV adjusted
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for Body Surface Area correlated with mGFR (r = 0.61, p < 0.001) in a study of DKD patients
and healthy volunteers [48].

In both humans and animal models, markedly increased renal size and function appear
to occur early in T2DM [14]. Normoglycemic individuals have been reported to have a
TKV of 280 mL, pre-diabetic patients 304 mL, and T2DM patients 321 mL [79]. Moreover,
in a large-scale cross-sectional study of 37,450 UK Biobank participants, T2DM patients had
a larger KPV than non-T2DM patients but showed a faster KPV decline independent of
lean tissue volume differences. The faster decline in T2DM may be explained by increased
hyperfiltration and oxidative stress that occurs in the kidneys of people with T2DM [80].
Liraglutide treatment is reported to significantly decrease KPV compared to placebo in
T2DM patients (see Table 1) [75].

In contrast to the renal hypertrophy seen in early T2DM, significant reductions in KPV
for DKD patients with CKD stages G3–4 (176 mL/1.73 m2) compared to age- and gender-
matched healthy volunteers (218 mL/1.73 m2) have been reported [48]. Repeatability
for measurements taken 2 weeks apart had a coefficient of variation (CV) of 7% and an
intra-class correlation coefficient (ICC) of 0.89 [48]. A study performed in non-DKD, CKD
patients with stages G3–4 showed a similar TKV of 170 mL/1.73 m2 with a 4% CV of the
measurements [81]. Interestingly, AKI patients have shown an increased TKV at the time of
AKI; however, TKV returned to the normal range, or even decreased to the range for CKD
patients, in most AKI patients after 1 year [82]. Episodes of AKI can contribute to DKD
progression and TKV may be used to monitor these excursions.

Manual segmentation of kidneys on MR images is tedious and operator dependent [60],
and a recent review of renal image segmentation techniques has highlighted limitations
that might hinder clinical translation [60]. Image segmentation is an important step for TKV
assessment but can also be used to derive kidney parenchyma contours, as well as cortex
and medulla volumes while excluding renal tumours or cysts. These contours can be used
subsequently in the analysis of functional MRI techniques, including perfusion, diffusion,
or BOLD. As DKD progresses, the corticomedullary contrast seen on MRI decreases [83],
making it difficult to derive separate cortex and medulla volumes in people with DKD.
This remains a challenge. Contrast-enhanced MRI can be used to produce good contrast
between the cortex and medulla; however, the risk of nephrogenic systemic fibrosis caused
by contrast agent use should not be neglected. The corticomedullary contrast ratio has
been improved significantly on inversion recovery Steady-State Free Procession (SSFP)
MRI without contrast compared to conventional, in-phase, T1-weighted, gradient-echo
MRI, and corticomedullary contrast ratio was positively correlated with eGFR [84]. Future
studies, therefore, may allow us to study the effects of DKD progression or therapeutic
interventions on cortical volume.

7.2. Kidney Haemodynamics

The way in which DKD affects kidney haemodynamics can be complex. The kidney
can compensate for structural changes (e.g., reduction in total nephron number, interstitial
fibrosis, and/or vascular rarefaction) that may precede any GFR changes in early-stage
CKD patients by increasing RBF and hyperfiltration at the glomerulus [85,86]. Structural
changes that occur later as DKD develops may subsequently affect RBF, likely reducing
it due to the increased resistance of renal microcirculation. The kidney is very effective
in maintaining glomerular pressure and filtration rate in healthy people, although such
autoregulation may be gradually lost as CKD progresses [45]. Moreover, CKD patients
receive a wide range of drugs that alter renal function and RBF. RBF has long been known
to be influenced by protein-rich meals and hydration state [87] and can be increased by
up to 50% post-prandially such that diet and hydration state must be controlled to ensure
comparability and repeatability of renal haemodynamic measurements.

Measurement of RBF by infusion of para-aminohippurate (PAH) and blood sampling
over several hours has long been the “gold standard” for determining kidney haemody-
namics. The renal extraction rate of PAH is assumed to be 85% in healthy people, although
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this decreases in those with renal impairment, with the individual reductions being rather
unpredictable [88]. PAH infusion is also burdensome for patients and cannot differentiate
single kidney blood flow. Colour Doppler ultrasonography, an easily accessible, alter-
native technique that can differentiate single kidney blood flow, is user dependent and
presents technical challenges in accurate evaluation of flow measurements in overweight
patients [45]. MRI may be a superior alternative. The main MRI methods used to evaluate
kidney haemodynamics are phase-contrast MRI (PC-MRI), arterial spin labelling (ASL),
and dynamic-contrast-enhanced MRI (DCE-MRI) (see Table 1). A recent study compared
all three techniques in T2DM patients and concluded that the repeatability of PC-MRI
measurements supported its use as a reference method for MRI of RBF [89]. Furthermore,
the comparison showed that while DCE-MRI and ASL measurements are unbiased, they
showed poor precision relative to PC-MRI [89].

7.2.1. Phase-Contrast-MRI

PC-MRI is a non-contrast-enhanced MRI technique that allows blood velocity and
flow to be determined in a specific vessel during the cardiac cycle within a few minutes.
Notably, PC-MRI directly measures RBF, unlike alternative MRI techniques such as ASL,
where total renal perfusion depends on labelling efficiency and the T1 of blood and tissue
that can introduce bias into the perfusion measurements. The first step in PC-MRI is an
angiogram acquisition to enable planning of a PC-MRI acquisition perpendicular to the
renal arteries and prior to any bifurcation. Phase and magnitude images are then acquired
for each renal artery, and RBF (mL/min) is computed by multiplying the renal artery area
(more accurate than cross-section) and mean blood velocity. While acquisition of the 2D
PC-MRI datasets takes one breath-hold for each kidney, planning can be challenging and
time-consuming. Total RBF per kidney should be reported in millilitres per minute for the
sum of the left and right kidneys, although RBF can be reported for individual kidneys if,
for example, one kidney is stenotic. In the case of multiple renal arteries, RBF through the
main and accessory arteries should be combined [52].

Typically, RBF is 1.1 L/min [90]. PC-MRI has shown that RBF is significantly decreased
in both mixed CKD patient groups [46,81,91] and in a DKD group [48] compared to healthy
volunteers. Moreover, RBF has been shown to differentiate between stages G3 and G4/5 of
DKD, with an AUC of 0.88, and p = 0.004 [48]. RBF measurements using PC-MRI correlate
well with “gold standard” methods, such as PAH infusion [45]. When examined 1–2 weeks
apart, reproducibility of respiratory-gated PC-MRI was generally good in CKD patients
and healthy volunteers with CVs of 12.9% and 8.3%, respectively [92], although one study
reported an intra-subject CV of 18% for CKD patients [81]. In DKD patients and healthy
volunteers examined 2 weeks apart, RBF had a CV of 7% and an ICC of 0.97 [48]. A
CV of 6% was seen in healthy volunteers despite the relatively long interval to complete
four repeat scans (4 months on average) [89].

Global kidney perfusion (mL/100 g per min) can be obtained by dividing RBF by
kidney volume and multiplying the result by 100 [93]. Highly significant decreases in
global perfusion have been demonstrated both in DKD patients versus healthy volun-
teers [48] and in a non-diabetic CKD population [81]. The lower global perfusion values
reported by Buchanan et al. [81] compared to Makvandi et al. [48] may be associated
with methodological differences, such as using TKV [81] rather than KPV [48] in global
perfusion calculations.

PC-MRI measures blood velocity throughout the cardiac cycle and, therefore, haemody-
namic biomarkers, such as end diastolic velocity (EDV), peak systolic velocity (PSV), and the
Renal Arterial Resistive Index (RARI) (see Figure 2), are also available. Notably, EDV and
RARI enabled healthy volunteers to be differentiated from DKD patients, and both EDV and
PSV could distinguish DKD patients with stage G3 versus stage G4/5 [48]. These are novel
MRI-biomarkers that may provide additional insights into DKD pathophysiology. A number
of derivative biomarkers, such as filtration fraction (FF) and PC-MRI-based renal plasma
flow (PC-RPF) [94], can also provide important insights into kidney pathophysiology.
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Ultimately, the goal is not to replace readily available GFR measurement with an
expensive imaging technique but to provide additional mechanistic data that may be useful
to understand the pathophysiology of the underlying disease, as well as the efficacy and/or
mechanisms of action of novel drugs fundamental to drug development. A systematic
review and a Consensus-Based Technical Recommendation on renal PC-MRI have been
coordinated by PARENCHIMA (renalmri.org accessed on 10 July 2023) [45,52], and we
have summarized its additional use in specific interventional studies in Table 1.

7.2.2. Arterial Spin Labelling

ASL is an MRI technique that produces a quantitative map of perfusion in the target
organ of interest by using arterial blood water as an endogenous contrast agent. Its use in
perfusion imaging outside of the brain was reviewed recently [56,95]. The PARENCHIMA
consensus paper on kidney ASL recommended that only cortical perfusion should be
reported because medullary ASL measurements are not reliable [55]. The advantage of ASL
over PC-MRI is that the perfusion image can show heterogeneity in the kidney, which may
indicate a lesion. ASL creates perfusion maps by subtracting labelled blood images from
control images, and therefore is susceptible to physiological motion, such as breathing and
peristalsis. Another challenge is the relatively long acquisition time compared to PC-MRI.

ASL cortical perfusion was reported to be lower in DKD patients [48] compared to
healthy volunteers. Of note, changes in ASL cortical perfusion with no significant decrease
in RBF have been reported after infusions designed to expand blood volume, where the
decrease in ASL cortical perfusion measured in mL/100 g per min was due to an increase in
kidney volume [96]. It has also been speculated that an increase in ASL cortical perfusion
with no change in RBF after treatment with a GLP-1 agonist may be due to changes in
kidney volume [97]. The intra-subject CV has been reported to be 9% and 31% in healthy
volunteers [46,89], 23% in CKD patients [81], and 33% in DKD patients and matched healthy
controls [48].

The first renal ASL study was performed in 1995 [98]. To the best of our knowledge, in
the intervening years only single-centre, renal ASL studies have been performed. This may
be because the MRI vendors offer different ASL techniques, and many imaging centres have
developed their own ASL solutions under research agreements, which makes coordinating
studies with similar techniques challenging. Whilst ASL is an exciting technique that offers
unique insights into kidney perfusion, it may not yet be ready for use in multicentre clinical
trials investigating novel drugs, although it has been used in some interventional studies
as a renal MRI endpoint (Table 1).

7.2.3. Dynamic Contrast Enhanced-MRI

Gadolinium-based contrast agents are widely used for enhancing the contrast of mag-
netic resonance (MR) images and improving MRI diagnostic capabilities. Magnetic resonance
renography (or renal dynamic contrast-enhanced MR, DCE-MR) depends on the transit of
intravenous gadolinium chelates through the parenchyma and collecting system of the kidney.
Compartmental analysis of renal tissue enhancement as a function of time has shown promising
results for assessing single-kidney function in healthy kidneys and various renal impairments.
Renal DCE-MRI endpoints are cortical perfusion (mL/min/100 mL), filtration fraction (%),
tubular volume fraction (%), and blood volume fraction (%) [99–101].

However, gadolinium-injection-based MRI methods are not commonly used in mul-
ticentre clinical trials to assess DKD patients because concerns about the contrast agent
translate into use restrictions in this population. Despite advances in the chelate structures
that hold the gadolinium, a black box warning still exists for its administration due to
potential brain deposition and toxicity in people with kidney disease [102,103], cautioning
its use in DKD patients with CKD stages 3–5. Additionally, the high variability and low
concordance rates of DCE-MRI measurements [104] hinder the repeatability, accuracy, and
precision required for their use to monitor treatment in DKD patients [89]. Moreover, there
are no reference-standard methods for translating renal DCE-MRI into clinical trials.
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A comprehensive introduction to renal DCE-MRI methods, as well as acquisition-
based motion correction and registration techniques, have been published recently based
on work conducted by PARENCHIMA [61,101]. These illustrate current limitations and
possible sources of discrepancies, including, but not limited to, differences in image acqui-
sition [105–107], motion correction applied [61,108], and kidney segmentation [109–111]
using DCE-MRI. Moreover, GFR estimates from DCE measurements depend on the kinetic
model and data type used [112]. In hypertensive patients, a 6% overestimation to 50%
underestimation of single-kidney DCE–eGFR values using the same data across different
models compared to standard radionuclide clearance and gamma-camera renography as
the reference have been reported [113]. Similarly, DCE–eGFR has been overestimated in
hydronephrosis [114] and allograft patients [115], whereas DCE–MRI has underestimated
eGFR in chronic liver disease [116] and hypertensive patients [117].

ASL and DCE have been compared for the measurement of RBF in healthy volun-
teers [118] and T2DM [89] with no significant mean differences reported. However, a
recent comparison of RBF measurements evaluated by DCE-MRI, ASL, and PC-MRI in
T2DM showed a poor agreement on individual level between these MRI methods [89].
Intra-subject CVs of 15–22% were reported for DCE-MRI-based RBF, tubular flow, and
eGFR with a 10-day interval between each measurement [119]. Boer et al. [120] reported
a 17% CV for DCE perfusion in healthy subjects using a radial acquisition strategy and a
temporal resolution of only 4.1 s.

Thus, the major limitations of DCE-MR, specifically the black box warning associated
with the injection of an additional substance (i.e., gadolinium) into DKD patients with CKD
stages 3–5 together with the lack of a reference-standard methodology, limit translation of
renal DCE-MRI into DKD clinical trials. This leaves an opportunity for future studies to
address the variability associated with this technique.

7.3. Oxygenation (BOLD)

The kidney BOLD MRI technique uses the paramagnetic properties of deoxyhaemoglobin
as an endogenous contrast agent to non-invasively assess deoxyhaemoglobin concentration
in tissue [50]. Changes in deoxyhaemoglobin tissue concentration contribute to creating
microscopic magnetic field inhomogeneities that can be captured with the BOLD-related
apparent relaxation rate R2* [s−1]. A higher level of deoxyhaemoglobin in blood increases R2*.
However, the fractional blood volume in tissue and blood hematocrit will also affect deoxy-
haemoglobin tissue concentration and thus R2*. It was reported recently that kidney cortex
and medulla fractional blood volume is significantly decreased in CKD patients compared to
healthy controls; cortical R2* was the same in both groups. Taking the fractional blood volume
into account, it could be shown that the kidney cortex is normoxemic in healthy controls and
hypoxemic in CKD [121]. Fractional blood volume was measured using an intravenous iron
oxide nanoparticle formulation for treating anaemia in patients with CKD that is not available
as a MR contrast agent in standard clinical practice. Fractional blood volume is an important
parameter to consider when interpreting BOLD MRI data but has not been available in most
clinical trials.

Renal oxygenation is based on a balance between oxygen supply and consump-
tion [122]. Most of the oxygen consumption in the kidney is due to reabsorption of filtered
sodium, so, when renal blood flow (and thus renal oxygen delivery) increases, renal oxygen
consumption also increases, as there is more filtered sodium to be reabsorbed [123]. If the
filtration fraction does not vary significantly, then a near-constant tissue oxygen tension
should prevail in the tissue. In renal physiology, the filtration fraction is the ratio of GFR
over the renal plasma flow. This suggests that filtration fraction might be one of the main
determinants of renal oxygenation status [94]. In healthy volunteers under continuous
steady-state infusion of angiotensin II, R2* values appeared to be more associated with kid-
ney filtration fraction than GFR, and the measured reduction in RBF was only accompanied
by a minor change in cortical R2* [94]. The amount of filtered sodium is the product of the
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GFR and the plasma sodium concentration, and, therefore, plasma sodium concentration
may also affect renal BOLD.

A major advantage of using BOLD to indirectly assess renal tissue oxygenation lies in
its non-invasive nature compared to direct oxygen pressure measurement using microelec-
trodes as the only existing alternative and not acceptable for use in volunteers or patients.
BOLD has been used to explore the potential renoprotective role of drug interventions, such
as GLP-1 agonists [97], lipo-prostaglandin E1 (Lipo-PGE1) [124], or SGLT2i [125,126] (see
also Table 1). A single 50 mg dose of dapagliflozin, a medication that inhibits the uptake
of sodium and glucose from the filtrate, decreased cortical R2* with no change in renal
perfusion and RBF, potentially due to reduced workload because of the reduced sodium
re-uptake [73] (see Table 1). Consistent with this finding, BOLD was able to capture an
improved renal hypoxia in newly diagnosed T2DM patients treated with canagliflozin
compared to glimepiride-treated controls [126].

BOLD data should be interpreted carefully because factors other than the fraction of
haemoglobin that is deoxygenated may affect the BOLD signal [127–129]. Apparent discrepan-
cies in BOLD findings from the same disease state have been reported [81,130–132]. For example,
a significant increase in the medullary R2* was measured after 32 weeks of treatment with
empagliflozin alone and in combination with semaglutide, suggesting that renal oxygenation
was not improved [76]; notably, however, the haematocrit increased significantly in these groups,
so the change in R2* may reflect haematocrit instead of oxygenation status (see also Table 1).

Importantly, R2* from BOLD has shown potential as a prognostic biomarker for
predicting kidney outcomes and progressive renal function decline in CKD patients after
1–4 years of follow-up [130,133,134]. In the future, BOLD R2* could be used to select at
risk patients for inclusion in clinical trials or for more intensive monitoring in clinical
practice. Indeed, an important milestone for BOLD-MRI application in clinical trials has
been the standardization of patient preparation, data acquisition, and analysis protocols
to deliver comparable data at most imaging centres and ongoing multicentre initiatives
to standardize BOLD-MRI methodology have been supported by PARENCHIMA [50,58].
The key to using BOLD MRI in drug development is the good repeatability of BOLD-MRI
measures, as supported by recent studies that reported less than 7% variations for R2*
test–retest repeatability analyses conducted on different days [46,48,120].

7.4. Kidney Microstructure
7.4.1. The T1 Relaxation Time

Native T1 mapping is a non-contrast-enhanced quantitative MRI technique derived
directly from MR relaxometry, in which the tissue contrast is determined by the longitudinal
(spin-lattice) relaxation time. Each pixel of the T1 parametric map represents how quickly
the nuclear spin magnetization returns to its equilibrium state after an RF pulse in the
MRI system [135]. Different acquisition schemes, post-processing, and data analysis can be
used to deliver T1 data, and PARENCHIMA recently published a systematic review and
consensus-based recommendations on how to generate T1 values [53,59].

The T1 relaxation time, also known as the relaxation rate R1 (R1 = 1/T1), is a tissue-
specific time variable. T1 values depend on the environment of water molecules within the
tissue, and changes in T1 may be useful biomarkers to assess water content abnormalities.
Decreased cortical T1 has been measured in compensated and decompensated cirrhosis pa-
tients [136], whereas increased T1 has been measured in IgA nephropathy (IgAN) [137] and
higher CKD stages [46,48,81,138]. Furthermore, in CKD patients—and like the diffusion-
weighted imaging (DWI)-generated Apparent Diffusion Coefficient (ADC)—T1 could
potentially separate relatively “low-level” from “high-level” fibrosis [81]. Thus, T1 is also
very promising for fibrosis assessment and could be an important prognostic biomarker.
Native T1 values, however, lack specificity and can be influenced by several different
factors [138], and, while T1 values correlate with interstitial fibrosis [139,140], this also
applies to other lesions, including tubular atrophy, chronic vasculopathy, and transplant
glomerulopathy [141].
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As MRI biomarkers of the kidney microstructure, T1 and ADC improve fibrosis detec-
tion with good cross-validated diagnostic performance when used in combination [139,140]
and may, therefore, provide additional information on disease progression in DKD. T1,
alone or in combination with other biomarkers, performed well in predicting kidney out-
come at 18 months [139] and renal function decline at a mean of 2 years [142]. T1 was a
significant predictor of UACR even when combined with mGFR in a bivariate model [48].
Furthermore, in a renal mpMRI study that included follow-up data on seven AKI patients,
a significantly increased T1 was measured in AKI patients compared to healthy volunteers
despite a small sample size [82]. Interestingly, during recovery from the acute AKI phase, T1
and serum creatinine measurements improved and returned to normal values in several pa-
tients, although T1 remained increased in two patients despite biochemical recovery, which
may indicate progression to chronic kidney injury [81], as could be expected with AKI.

Several research groups have reported good repeatability of T1 data with less than 5.1%
CV reported for both cortical and medullary T1 test–retest and inter-observer
evaluations [46,48,81,120,137,143,144]. Such good repeatability is vital in drug develop-
ment and suggests that T1 could potentially be used as a marker of kidney damage in
drug development.

7.4.2. DWI

Diffusion of water molecules within biological tissues depends on the intravascular,
extracellular, or intracellular fluid compartments in which the molecules are located. Renal
DWI probes the water molecules’ diffusion and interactions with tissue components and
cell boundaries. Diffusivity can be altered by changes in the extracellular milieu due to
fibrosis and associated collagen accumulation, oedema, cellular infiltration, or perfusion
changes. The DWI-generated ADC can potentially separate patients with relatively “low
level” fibrosis from “high level” fibrosis [81,139–141,145], making it a very promising
biomarker for the assessment of fibrosis that itself is an important surrogate marker of
DKD progression. ADC outperformed GFR in predicting fibrosis progression in kidney
allografts patients who have undergone repeated biopsy and DWI assessments [146].

Renal ADC has been shown to correlate with interstitial fibrosis in several studies [147–149],
although less is known about the exact underlying processes affecting the DWI signal [150].
The correlation between ADC and established biochemical biomarkers of kidney function
and damage (i.e., GFR and UACR) in DKD patients has been confirmed in the univariate
analysis of Makvandi et al. [48]. By adding mGFR as one variable, however, ADC was
no longer significant in the bivariate prediction of UACR, suggesting that ADC could be
linked to UACR via its effect on GFR. Interestingly, the ADC remained unchanged during
3 months of therapy in patients with renovascular disease and mild fibrosis and did not
correlate with eGFR, serum creatinine, renal hypoxia, or inflammation, which could suggest
that these factors are not captured in the ADC values [147]. In a sub-study of the COMBINE
trial, baseline cortical ADC significantly correlated with the annual, patient-specific eGFR
slope over 12 months (p = 0.08), although this was no longer significant once albuminuria
was adjusted for, suggesting that there is either overlapping information between ADC
and traditional risk factors for CKD progression, or albuminuria is a causal pathway to
CKD progression [151].

Recently, PARENCHIMA published consensus-based guidance and recommendations
to harmonize inter-site DWI MR protocols [54] and to facilitate translation of DWI in multi-
centre clinical trials [43]. Studies are also underway to confirm the link between renal DWI
biomarkers and kidney fibrosis in DM subjects, such as the Biomarker Enterprise to Attack
Diabetic Kidney Disease (BEAt-DKD) trial (NCT03716401) [152]. Another important factor
for DWI use in clinical trials is based on its repeatability and reproducibility, which enables
patient numbers to be reduced whilst still capturing changes due to treatment response.
An intra-subject ADC CV of ≤ 7.2% has been reported in ADC test–retest repeatability
analyses, which is less than the variability measured in UACR measurements [48]. Together,
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these studies support the efforts of ongoing multicentre initiatives to standardize methods
and make DWI comparable between and deliverable at most imaging centres.

7.5. Magnetic Resonance Elastography

Magnetic resonance elastography (MRE) enables the study of tissue stiffness and
is of particular interest for pathologies involving fibrosis like DKD. MRE has several
similarities to other MR-based techniques used to study the diseased kidney while also
being fundamentally different. Most of the techniques we have discussed rely solely on the
imaging pulse sequence design to investigate an intrinsic tissue property of choice. With
MRE, however, the MR scanner is used to monitor how externally applied mechanical
waves propagate through the tissue of interest since wave velocity increases with increasing
tissue stiffness [153].

The most common and clinically available implementation of MRE involves a pneu-
matically driven actuator vibrating at a specific frequency that is positioned over the
anatomical area to be examined. An alternative and promising technique is called MR to-
moelastography; this involves multiple actuators positioned around the area of interest that
is reported to yield enhanced depth coverage compared to the single source approach [154].
To the best of our knowledge, MR tomoelastography is under development and not yet
approved for clinical use. Notably, stiffness measurements based on the elastography prin-
ciple are not limited to MRI but are also available with ultrasound-based techniques [155].

MRE offers a completely non-invasive examination and compared to renal biopsy,
where only a limited number of points are sampled, a successful MRE examination provides
a comprehensive overview of how the stiffness is distributed throughout the whole kidney.
Thus, and considering that MRE stiffness is frequently used to monitor fibrotic development
in liver diseases [156,157], MRE might also fulfil a similar role for the kidney and DKD.
Two studies on kidney allografts have reported a positive correlation between fibrosis
and stiffness [158,159], although, in two other studies on native kidneys with CKD (using
MRE) [160] and DKD (using ultrasound elastography) [161], renal tissue stiffness actually
decreased with progressing kidney disease and corresponding biopsy-determined increase
in fibrosis. Chen et al. [161] speculated that the decrease in stiffness may have been due
to hypoperfusion.

Healthy volunteer reproducibility studies on kidney stiffness with MRE have reported
high concordance correlations between same day repeat scans (CV 3–10% depending
on MRE technique and cortex or medulla) [162] and a mean difference of 6% for intra-
subject measurements performed 4–5 weeks apart [163]. A corresponding study for the
MR tomoelastography technique reported an intra-class correlation for reproducibility
coefficient of 0.78 for the whole parenchyma [164]. In a study on patients with IgAN, renal
stiffness measured by MR tomoelastography was compared to ADC and BOLD, and renal
stiffness demonstrated a greater sensitivity to IgAN than ADC (AUC 0.9 vs. 0.8), whereas
BOLD showed no effect [165].

While a change in renal impairment in DKD can be detected by a change in renal
stiffness, and MRE stiffness measurements have demonstrated reproducibility, the parame-
ter should probably still be used with caution in DKD clinical studies since fibrosis and
the other changes that progress with DKD may mask or suppress each other’s impact on
renal stiffness.

7.6. Fatty Kidney

Fatty kidney comprises perirenal, sinus, and renal parenchyma fat [166–169]. Perirenal
and sinus fat volumes can be measured with a variety of high-resolution MRI techniques to
visualize the renal facia that separate perirenal fat from the pararenal depot. Renal sinus fat
is an extension of the perirenal fat in close contact with the renal pelvis and calyces. Renal
parenchyma fat comprises the lipid droplets inside the renal parenchymal cells and can be
measured with either the proton density fat fraction (PDFF) imaging technique [170] or a
localized spectroscopy technique [171]. PDFF produces a map showing the proportion of
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fat in each voxel of the image. The localized spectroscopy technique isolates the proton
MR spectroscopy signal from a selected region of the body and can be used to quantitate
signals from the lipid methyl, methylene, and protons associated with double bonds.

Perirenal fat is of interest as a target for drug development, as it may contribute to
the pathogenesis of hypertension, obesity, and chronic renal diseases [172]. Excessive
perirenal and sinus fat may induce mechanical compression of the renal parenchyma,
vasculatures, nerve fibres, and the collecting system and contribute to hyperfiltration and
hypertension [173]. A larger sinus fat volume has been found in T2DM patients compared
to healthy controls and is associated with HbA1c, visceral adipose tissue (VAT), and blood
lipids [174], yet treatment with intensive glucose-lowering therapy had no effect on sinus
fat volume despite the significant decrease in HbA1c, VAT, triglyceride, and cholesterol
(Table 1) [75]. The contributions of these three types of renal fat to CKD and DKD have
recently been reviewed [175].

Perirenal and sinus fat can be measured with CT [176], ultrasound [177], and MRI [178].
Ultrasound can measure the thickness of perirenal fat on the lateral aspect of the abdomen,
although this approach may also include pararenal fat [175]. Some perirenal fat studies
have used CT to measure perirenal fat thickness or volume [175]; however, perirenal fat
is not homogeneous around the kidney, and there is no consensus on where to measure
perirenal fat thickness [175,176]. Renal sinus fat has also been measured as an area in a
single kidney slice or as volume from multiple slices. Given the small size and irregular
shape of renal sinus fat, volumetric measurement of renal sinus fat is recommended, as
well as using MRI rather than CT to minimize the risks from ionizing radiation from the
CT scan [175].

MRI is the only non-invasive technique to measure renal parenchyma fat. Localized
spectroscopy is a specialized technique that may be difficult to run in a multicentre clinical
trial, whereas PDFF is a common endpoint in liver studies to quantify hepatic fat content.
The challenge in the kidney is that renal parenchymal fat exists at much lower levels than in
the liver (commonly 1–3%), and, in people with DM, the kidney is commonly surrounded
by a thick layer of perirenal, pararenal, and other visceral fat depots. Thus, it is important
to design a PDFF protocol that minimizes artefacts originating outside of the kidney that
could contaminate the renal PDFF signal. PDFF methods have shown significantly higher
levels of renal parenchymal fat in obese individuals [179], T2DM patients [180], and T2DM
patients with microalbuminuria [181] compared to relevant control groups. Intervention
studies in T2DM patients have shown significant reductions in renal parenchyma fat after
either 26 weeks of treatment with liraglutide [171] or at least 3 months of treatment with
empagliflozin [182].

7.7. Multiparametric Imaging

In many diseases, univariate measurements do not entirely describe the disease or
efficacy of treatment effects. mpMRI incorporates multiple anatomical and functional
quantitative imaging biomarkers allowing more comprehensive tissue characterization
than any single measure [183]. Combining mpMRI endpoints into a single determination
of longitudinal change has mostly been limited to the development of composite endpoints
that use logic operators, such as “AND” and “OR”, to determine a binary outcome based
on a priori-defined thresholds applied to the components of the composite endpoint. One
example is PI-RADS V2.1 for assessment of prostate cancer [184]. An alternative approach is
to represent multiple MRI biomarkers as a single multidimensional vector to represent the
disease state more completely [183]. This mpMRI descriptor may be thought of as providing
an mpMRI signature of the disease state and may one day be capable of differentiating
between DKD and other forms of CKD (underlying IgA nephropathy for example). Future
studies will show whether mpMRI signatures can be defined for DKD and other kidney
diseases and if changes in the mpMRI vector can be used to track clinical interventions
with novel therapeutics.
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7.8. Multi-Organ Imaging

As many comorbidities can drive multi-organ dysfunction that may, in turn, lead
to CKD, a “whole-body” investigative approach may be appropriate for CKD and its
treatment. The impact of pharmacological treatment is usually assessed with circulating
biomarkers, although it can be difficult to link such biomarkers to the individual organ of
interest due to their whole body/systemic nature. The advantage of MRI is that it generates
spatial information. Thus, MRI has the capability to investigate not only the individual
organ affected, such as the kidney, but other organs that might be affected and provide a
whole-body, systemic overview (Figure 3).
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Figure 3. An Integrated Imaging Protocol of End-Organ Damage and Disease. An integrated imaging
protocol for the kidneys, liver, heart, and body composition that can be performed using multi-
organ imaging methodology in under 45 min. CO = cardiac output; EDV = end-diastolic volume,
LV = left ventricle; MRE = magnetic resonance elastography; MRI = magnetic resonance imaging;
MRI-PDFF = magnetic resonance imaging-derived proton density fat fraction; SV = stroke volume.

This does not necessarily mean that the current regulatory landscape would allow
a single, pivotal clinical trial to be used for registration of protection of multiple end-
organs, including the kidney. The use of whole-body MRI is complicated by clinical
trial inclusion/exclusion criteria specific to the individual disease phenotype. Patient
characteristics also may differ between populations (i.e., a CKD population is usually
much older than a typical population with non-alcoholic steatohepatitis), which further
hinders inclusion of two or more diseases in the same population. Thus, MRI of multiple
organ endpoints is primarily used in early phase clinical trials (e.g., phases 1B and 2A)
to provide information on potential clinical and sub-clinical improvements on end-organ
status induced by novel therapies. The increased cost and complexity of including MRI in
a clinical trial means that MRI should ideally be used when circulating biomarkers are not
sufficient to answer the biological questions defined in the clinical study.

8. Challenges of Multi-Site Studies

The renal MRI techniques described in this review are not currently used for diagnostic
MRI of the kidney, and the vast majority of the studies discussed in this review are academic,
single-centre studies. However, these methods are now starting to be applied in multicentre
studies [152,185,186]. Clinical trials typically involve several imaging sites and potentially
hundreds of sites. Most commonly, a central imaging facility that may be part of the
sponsoring company or a partner contract research organization (CRO) is responsible for
coordinating image acquisition and processing. The importance of standardization has been
recognized both by the regulators and industry to ensure the quality of output. Regulators
have issued guidance on the standards that should be applied when designing imaging
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clinical trials [62], and consensus statements on best practices in clinical trials [43,187] offer
additional guidance.

The imaging charter [62] is a formal document detailing the roles and responsibil-
ities of the various parties involved in a clinical trial and includes imaging acquisition,
display, archiving, and interpretation process standards. It is developed together with
the sponsor. Other important imaging-specific documents include the “Imaging Manual”
and the “Corelab Manual”, which describe how images are acquired at the imaging sites
and subsequently analysed at the Core Imaging Facility (CIF). An important consideration
when developing the documentation is to decide the best balance between fidelity and
feasibility. Radiology departments have MRI scanners from different manufacturers used
at different magnetic field strengths, so restricting the study to similar MRI scanners across
all imaging sites may not be feasible. In this case, the CIF specifies a harmonized imaging
protocol to control potential sources of imaging bias and variability. The main activities of
the CIF are to establish the sites where the data are collected, to verify that the data conform
to the required standard (site qualification), and to provide ongoing support and quality
assurance throughout the trial (Figure 4).
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Figure 4. The Main Activities Performed by the Core Imaging Facility. Image analysis flow through
the Core Imaging Facility CoreLab during a clinical study/trial using MRI.

The task of imaging specialists, either within the sponsoring company or outsourced
through a CRO, is to implement MRI in a clinical trial. The overwhelming majority—if
not all—of MRI trials are performed in collaborating clinical radiology departments. The
need for reproducibility within a site and consistency between sites are contradictory to the
needs of diagnostic imaging, which is concerned with producing the best quality image
to visualize a specific pathology in a given individual. In clinical trials, however, the MRI
protocol is locked for the full duration of the study, and only pre-specified changes within
a limited range are allowed.

Imaging site personnel must be trained to implement a standardized imaging protocol
that is applied by all clinical sites participating in the trial. After training, each site must
submit test data for review by the CIF. Once a data set has been approved, the clinical site
receives a formal authorization letter to start scanning patients for the clinical trial. Quality
control (QC) of incoming images is extremely important; if any image fails a QC evaluation,
a repeat examination must be requested, detailing the shortcomings of the images.

9. Conclusions

The rapid evolution of MRI techniques over the past decade has revealed new opportu-
nities to non-invasively assess and quantify functional, structural, and pathophysiological
changes in DKD and offer a more personalized approach to its management. Several
pioneering studies have demonstrated that advanced mpMRI tools provide more compre-
hensive information across individual kidney compartments on microstructure (including
kidney fibrosis and inflammation), macrostructure (kidney volume), oxygenation, and
haemodynamic measurements of RBF and perfusion. This may improve our understanding
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of different phenotypes and progression of DKD and, coupled with its higher reproducibil-
ity and potential to lower the overall cost of clinical trials, enable a more comprehensive
analysis of efficacy and modes of action of potential therapeutic interventions for DKD.
MRI biomarkers are likely to play a strong role as biomarkers in future clinical drug trials
in DKD patients and improve their managements and prognoses.

The imaging methods discussed in this review all offer unique insights into kidney
physiology and pathology. However, one of the constraints for imaging studies is the
length of time that subjects spend in the scanner. This should be as short as possible, and,
therefore, it is necessary to select imaging methods appropriate to the target of interest in
the clinical trial. One combination that has proved useful in a range of studies and that can
be performed in under 40 min is T1 mapping to provide insight into kidney microstructures
and cortical and parenchymal volumes, PC-MRI to provide haemodynamics, BOLD MRI
as a marker of oxygenation, and DWI as a marker of fibrosis. If the target of interest is
metabolic, then PDFF to measure kidney parenchymal fat can be acquired in an extra 5 min.
Techniques such as ASL and DCE-MRI can be used in expert single-centre studies if the
extra time for the acquisition can be justified.

Nevertheless, several challenges remain to be addressed before these techniques
become commonplace in clinical practice for the diagnosis of DKD. Rigorous technical and
clinical validations are needed, although the major limitation is likely to be the provision
of evidence of clinical utility to show that MRI provides important information about the
disease or the intervention that is not available by other means. Prognostic biomarkers
are needed by clinicians to identify the likelihood of a clinical event, disease recurrence or
progression in patients, and to identify fast progressors for inclusion in clinical trials. In
addition, cost-effectiveness must be demonstrated. These challenges need to be balanced
against the huge potential benefit the DKD population is likely to experience from the
advances in these imaging techniques because of the complex and heterogeneous nature of
the disease.

Advances in kidney imaging are continuing to be driven by consortia, such as the EU
IMI project BEAt-DKD [188], the UK Renal Imaging Network [189], the Kidney Precision
Medicine Project [190], and RENALMRI.org (renalmri.org), as well as academics and phar-
maceutical companies interested in the validation of novel biomarkers of kidney disease.
One of the aims of these consortia is to continue the work started by PARENCHIMA on the
harmonization of kidney MRI acquisition and analysis methods. Harmonization will drive
the implementation of improved methods by scanner manufacturers, the development of
image analysis techniques, and acceptance by clinicians and regulators.

Author Contributions: All authors have contributed to reviewing the literature, writing, and editing
the review, have approved the submitted version, and have agreed to be accountable for their own
contributions. All authors have read and agreed to the published version of the manuscript.

Funding: Editorial support for this review was funded by Antaros Medical.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Acknowledgments: We would like to thank Moritz Schneider for reviewing the manuscript and
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