551 research outputs found

    Gender-specific aspects of epidemiology, molecular genetics and outcome: lung cancer.

    Get PDF
    Lung cancer remains the leading cause of cancer-related deaths worldwide in women and men. In incidence, lung cancer ranks second, surpassed by breast cancer in women and prostate cancer in men. However, the historical differences in mortality and incidence rate between both sexes have changed in the last years. In the last decades, we have also witnessed an increased number of lung cancer in female never-smokers. These disparities have grown our interest in studying the impact of the gender and sex in the presentation of lung cancer. The aetiology is yet to be fully elucidated, but the data are clear so far: there is a growing divide between lung cancer presentation in women and men that will change our management and study of lung cancer. This article aims to review the sex and gender differences in lung cancer

    Temporal and regional variability in the skin microbiome of humpback whales along the Western Antarctic Peninsula

    Get PDF
    Ā© The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Applied and Environmental Microbiology 84 (2018): e02574-17, doi:10.1128/AEM.02574-17.The skin is the first line of defense between an animal and its environment, and disruptions in skin-associated microorganisms can be linked to an animal's health and nutritional state. To better understand the skin microbiome of large whales, high-throughput sequencing of partial small subunit ribosomal RNA genes was used to study the skin-associated bacteria of 89 seemingly healthy humpback whales (Megaptera novaeangliae) sampled along the Western Antarctic Peninsula (WAP) during early (2010) and late (2013) austral summers. Six core genera of bacteria were present in 93% or more of all humpback skin samples. A shift was observed in the average relative abundance of these core genera over time, with the emergence of four additional core genera corresponding to a decrease in water temperature, possibly caused by seasonal or foraging related changes in skin biochemistry that influenced microbial growth, or other temporal-related factors. The skin microbiome differed between whales sampled at several regional locations along the WAP, suggesting that environmental factors or population may also influence the whale skin microbiome. Overall, the skin microbiome of humpback whales appears to provide insight into animal and environmental-related factors and may serve as a useful indicator for animal health or ecosystem alterations.This project was supported by 67 donors to the ā€œWhale Bacterial Buddiesā€ crowdfunded project supported by WHOI, the Edna Bailey Sussman Fund, and the Michael K. Orbach Enrichment Fund awarded to K. C. Bierlich

    The Genetic Structure and History of Africans and African Americans.

    Get PDF
    Africa is the source of all modern humans, but characterization of genetic variation and of relationships among populations across the continent has been enigmatic. We studied 121 African populations, four African American populations, and 60 non-African populations for patterns of variation at 1327 nuclear microsatellite and insertion/deletion markers. We identified 14 ancestral population clusters in Africa that correlate with self-described ethnicity and shared cultural and/or linguistic properties. We observed high levels of mixed ancestry in most populations, reflecting historical migration events across the continent. Our data also provide evidence for shared ancestry among geographically diverse hunter-gatherer populations (Khoesan speakers and Pygmies). The ancestry of African Americans is predominantly from Niger-Kordofanian (approximately 71%), European (approximately 13%), and other African (approximately 8%) populations, although admixture levels varied considerably among individuals. This study helps tease apart the complex evolutionary history of Africans and African Americans, aiding both anthropological and genetic epidemiologic studies

    The Genetic Structure of Pacific Islanders

    Get PDF
    Human genetic diversity in the Pacific has not been adequately sampled, particularly in Melanesia. As a result, population relationships there have been open to debate. A genome scan of autosomal markers (687 microsatellites and 203 insertions/deletions) on 952 individuals from 41 Pacific populations now provides the basis for understanding the remarkable nature of Melanesian variation, and for a more accurate comparison of these Pacific populations with previously studied groups from other regions. It also shows how textured human population variation can be in particular circumstances. Genetic diversity within individual Pacific populations is shown to be very low, while differentiation among Melanesian groups is high. Melanesian differentiation varies not only between islands, but also by island size and topographical complexity. The greatest distinctions are among the isolated groups in large island interiors, which are also the most internally homogeneous. The pattern loosely tracks language distinctions. Papuan-speaking groups are the most differentiated, and Austronesian or Oceanic-speaking groups, which tend to live along the coastlines, are more intermixed. A small ā€œAustronesianā€ genetic signature (always <20%) was detected in less than half the Melanesian groups that speak Austronesian languages, and is entirely lacking in Papuan-speaking groups. Although the Polynesians are also distinctive, they tend to cluster with Micronesians, Taiwan Aborigines, and East Asians, and not Melanesians. These findings contribute to a resolution to the debates over Polynesian origins and their past interactions with Melanesians. With regard to genetics, the earlier studies had heavily relied on the evidence from single locus mitochondrial DNA or Y chromosome variation. Neither of these provided an unequivocal signal of phylogenetic relations or population intermixture proportions in the Pacific. Our analysis indicates the ancestors of Polynesians moved through Melanesia relatively rapidly and only intermixed to a very modest degree with the indigenous populations there

    Demographic and physiological signals of reproductive events in humpback whales on a southwest pacific breeding ground

    Get PDF
    The field of marine mammal conservation has dramatically benefited from the rapid advancement of methods to assess the reproductive physiology of individuals and populations from steroid hormones isolated from minimally invasive skin-blubber biopsy samples. Historically, this vital information was only available from complete anatomical and physiological investigations of samples collected during commercial or indigenous whaling. Humpback whales (Megaptera novaeangliae) are a migratory, cosmopolitan species that reproduce in warm, low-latitude breeding grounds. New Caledonia is seasonally visited by a small breeding sub-stock of humpback whales, forming part of the endangered Oceania subpopulation. To better understand the demographic and seasonal patterns of reproductive physiology in humpback whales, we quantified baseline measurements of reproductive hormones (progesterone ā€“ P4, testosterone - T, and 17Ī²-estradiol ā€“ E2) using an extensive archive of skin-blubber biopsy samples collected from female humpback whales in New Caledonia waters between 2016-2019 (n = 194). We observed significant differences in the P4, T, and E2 concentrations across different demographic groups of female humpback whales, and we described some of the first evidence of the endocrine patterns of estrus in live free-ranging baleen whales. This study is fundamental in its methodological approach to a wild species that has a global distribution, with seasonally distinct life histories. This information will assist in monitoring, managing, and conserving this population as global ecological changes continue to occur unhindered.Peer reviewe

    Hydrodynamic properties of fin whale flippers predict maximum rolling performance

    Get PDF
    Maneuverability is one of the most important and least understood aspects of animal locomotion. The hydrofoil-like flippers of cetaceans are thought to function as control surfaces that effect maneuvers, but quantitative tests of this hypothesis have been lacking. Here, we constructed a simple hydrodynamic model to predict the longitudinal-axis roll performance of fin whales, and we tested its predictions against kinematic data recorded by on-board movement sensors from 27 free-swimming fin whales. We found that for a given swimming speed and roll excursion, the roll velocity of fin whales calculated from our field data agrees well with that predicted by our hydrodynamic model. Although fluke and body torsion may further influence performance, our results indicate that lift generated by the flippers is sufficient to drive most of the longitudinal-axis rolls used by fin whales for feeding and maneuvering

    International Whaling Commissionā€“Southern Ocean GLOBEC/CCAMLR collaboration. Scientific Committee document SC/55/E10, International Whaling Commission, May-June 2003, Berlin, Germany

    Get PDF
    Collaboration between the International Whaling Commission, and national programs conducting multidisciplinary ecosystem research in the Antarctic under Southern Ocean Global Ecosystem Dynamics (SO GLOBEC) program and the Commission for the Convention on Antarctic Marine Living Resources (CCAMLR) occurred during five research cruises between April 2002 and April 2003. Visual survey, passive acoustic and tissue biopsy work was conducted by IWC observers and collaborating passive acoustics scientists. Reported here are the preliminary results from these cruises: mapped distribution patterns of cetaceans from visual survey sighting data; individual photo identification records; species identification and positions of animals recorded on sonobuoys; and descriptions of environmental conditions observed or recorded as part of the multidisciplinary effort

    Super-Aggregations of Krill and Humpback Whales in Wilhelmina Bay, Antarctic Peninsula

    Get PDF
    Ecological relationships of krill and whales have not been explored in the Western Antarctic Peninsula (WAP), and have only rarely been studied elsewhere in the Southern Ocean. In the austral autumn we observed an extremely high density (5.1 whales per km2) of humpback whales (Megaptera novaeangliae) feeding on a super-aggregation of Antarctic krill (Euphausia superba) in Wilhelmina Bay. The krill biomass was approximately 2 million tons, distributed over an area of 100 km2 at densities of up to 2000 individuals māˆ’3; reports of such ā€˜super-aggregationsā€™ of krill have been absent in the scientific literature for >20 years. Retentive circulation patterns in the Bay entrained phytoplankton and meso-zooplankton that were grazed by the krill. Tagged whales rested during daylight hours and fed intensively throughout the night as krill migrated toward the surface. We infer that the previously unstudied WAP embayments are important foraging areas for whales during autumn and, furthermore, that meso-scale variation in the distribution of whales and their prey are important features of this system. Recent decreases in the abundance of Antarctic krill around the WAP have been linked to reductions in sea ice, mediated by rapid climate change in this area. At the same time, baleen whale populations in the Southern Ocean, which feed primarily on krill, are recovering from past exploitation. Consideration of these features and the effects of climate change on krill dynamics are critical to managing both krill harvests and the recovery of baleen whales in the Southern Ocean
    • ā€¦
    corecore