22 research outputs found

    Dissecting the Shared Genetic Architecture of Suicide Attempt, Psychiatric Disorders, and Known Risk Factors

    Get PDF
    Background Suicide is a leading cause of death worldwide, and nonfatal suicide attempts, which occur far more frequently, are a major source of disability and social and economic burden. Both have substantial genetic etiology, which is partially shared and partially distinct from that of related psychiatric disorders. Methods We conducted a genome-wide association study (GWAS) of 29,782 suicide attempt (SA) cases and 519,961 controls in the International Suicide Genetics Consortium (ISGC). The GWAS of SA was conditioned on psychiatric disorders using GWAS summary statistics via multitrait-based conditional and joint analysis, to remove genetic effects on SA mediated by psychiatric disorders. We investigated the shared and divergent genetic architectures of SA, psychiatric disorders, and other known risk factors. Results Two loci reached genome-wide significance for SA: the major histocompatibility complex and an intergenic locus on chromosome 7, the latter of which remained associated with SA after conditioning on psychiatric disorders and replicated in an independent cohort from the Million Veteran Program. This locus has been implicated in risk-taking behavior, smoking, and insomnia. SA showed strong genetic correlation with psychiatric disorders, particularly major depression, and also with smoking, pain, risk-taking behavior, sleep disturbances, lower educational attainment, reproductive traits, lower socioeconomic status, and poorer general health. After conditioning on psychiatric disorders, the genetic correlations between SA and psychiatric disorders decreased, whereas those with nonpsychiatric traits remained largely unchanged. Conclusions Our results identify a risk locus that contributes more strongly to SA than other phenotypes and suggest a shared underlying biology between SA and known risk factors that is not mediated by psychiatric disorders.Peer reviewe

    Combined inhibition of c-Abl and PDGF receptors for prevention and treatment of murine sclerodermatous chronic graft-versus-host disease

    Full text link
    Chronic graft-versus-host disease (cGvHD) is a common complication of allogeneic bone marrow transplantation, and has a major effect on the long-term prognosis. The molecular mechanisms underlying cGvHD have been only partially revealed, and molecular targeted therapies have not yet been established for clinical use. We examined the effects of the combined inhibition of the Abelson kinase (c-Abl) and platelet-derived growth factor receptors (PDGFR) in experimental sclerodermatous cGvHD. Treatment using imatinib or nilotinib abolished the aberrant activation of c-Abl and PDGFR and protected against experimental cGvHD. Preventive therapy using imatinib or nilotinib inhibited the development of sclerodermatous cGvHD. Clinical features such as weight loss, alopecia, and skin ulcers, and histologic features with dermal thickening and accumulation of collagen were significantly reduced in mice that received imatinib or nilotinib therapy, but not in mice that received prednisone therapy. Of note, imatinib and nilotinib were also effective for treatment of experimental cGvHD that had already been clinically manifested. In summary, the combined inhibition of c-Abl and PDGFR is effective for prevention and treatment of experimental sclerodermatous cGvHD. Considering the high morbidity associated with cGvHD, the lack of efficient molecular therapies for clinical use, and first positive signals from uncontrolled studies of imatinib, combined inhibition of c-Abl and PDGFR might be a promising future strategy for treatment of sclerodermatous cGvHD

    Atypical Melanocytic Proliferations and New Primary Melanomas in Patients With Advanced Melanoma Undergoing Selective BRAF Inhibition

    Full text link
    Purpose Selective inhibition of mutant BRAF by using class I RAF inhibitors in patients with metastatic melanoma has resulted in impressive clinical activity. However, there is also evidence that RAF inhibitors might induce carcinogenesis or promote tumor progression via stimulation of MAPK signaling in RAF wild-type cells. We analyzed melanocytic lesions arising under class I RAF inhibitor treatment for dignity, specific genetic mutations, or expression of signal transduction molecules. Patients and Methods In all, 22 cutaneous melanocytic lesions that had either developed or considerably changed in morphology in 19 patients undergoing treatment with selective BRAF inhibitors for BRAF-mutant metastatic melanoma at seven international melanoma centers within clinical trials in 2010 and 2011 were analyzed for mutations in BRAF and NRAS genes and immunohistologically assessed for expression of various signal transduction molecules in comparison with 22 common nevi of 21 patients with no history of BRAF inhibitor treatment. Results Twelve newly detected primary melanomas were confirmed in 11 patients within 27 weeks of selective BRAF blockade. In addition, 10 nevi developed of which nine were dysplastic. All melanocytic lesions were BRAF wild type. Explorations revealed that expression of cyclin D1 and pAKT was increased in newly developed primary melanomas compared with nevi (P = .01 and P = .03, respectively). There was no NRAS mutation in common nevi, but BRAF mutations were frequent. Conclusion Malignant melanocytic tumors might develop with increased frequency in patients treated with selective BRAF inhibitors supporting a mechanism of BRAF therapy–induced growth and tumorigenesis. Careful surveillance of melanocytic lesions in patients receiving class I RAF inhibitors seems warranted

    Inhibition of hedgehog signaling for the treatment of murine sclerodermatous chronic graft-versus-host disease

    Full text link
    Chronic graft-versus-host disease (cGVHD) is a prognosis limiting complication of allogeneic stem cell transplantation. The molecular mechanisms underlying cGVHD are incompletely understood, and targeted therapies are not yet established for clinical use. Here we examined the role of the hedgehog pathway in sclerodermatous cGVHD. Hedgehog signaling was activated in human and murine cGVHD with increased expression of sonic hedgehog and accumulation of the transcription factors Gli-1 and Gli-2. Treatment with LDE223, a highly selective small-molecule antagonist of the hedgehog coreceptor Smoothened (Smo), abrogated the activation of hedgehog signaling and protected against experimental cGVHD. Preventive therapy with LDE223 almost completely impeded the development of clinical and histologic features of sclerodermatous cGVHD. Treatment with LDE223 was also effective, when initiated after the onset of clinical manifestations of cGVHD. Hedgehog signaling stimulated the release of collagen from cultured fibroblasts but did not affect leukocyte influx in murine cGVHD, suggesting direct, leukocyte-independent stimulatory effects on fibroblasts as the pathomechanism of hedgehog signaling in cGVHD. Considering the high morbidity of cGVHD, the current lack of efficient molecular therapies for clinical use, and the availability of well-tolerated inhibitors of Smo, targeting hedgehog signaling might be a novel strategy for clinical trials in cGVHD
    corecore