11 research outputs found

    The Polycomb repressive complex 2 deposits H3K27me3 and represses transposable elements in a broad range of eukaryotes

    Get PDF
    The mobility of transposable elements (TEs) contributes to evolution of genomes. Their uncontrolled activity causes genomic instability; therefore, expression of TEs is silenced by host genomes. TEs are marked with DNA and H3K9 methylation, which are associated with silencing in flowering plants, animals, and fungi. However, in distantly related groups of eukaryotes, TEs are marked by H3K27me3 deposited by the Polycomb repressive complex 2 (PRC2), an epigenetic mark associated with gene silencing in flowering plants and animals. The direct silencing of TEs by PRC2 has so far only been shown in one species of ciliates. To test if PRC2 silences TEs in a broader range of eukaryotes, we generated mutants with reduced PRC2 activity and analyzed the role of PRC2 in extant species along the lineage of Archaeplastida and in the diatom P. tricornutum. In this diatom and the red alga C. merolae, a greater proportion of TEs than genes were repressed by PRC2, whereas a greater proportion of genes than TEs were repressed by PRC2 in bryophytes. In flowering plants, TEs contained potential cis-elements recognized by transcription factors and associated with neighbor genes as transcriptional units repressed by PRC2. Thus, silencing of TEs by PRC2 is observed not only in Archaeplastida but also in diatoms and ciliates, suggesting that PRC2 deposited H3K27me3 to silence TEs in the last common ancestor of eukaryotes. We hypothesize that during the evolution of Archaeplastida, TE fragments marked with H3K27me3 were selected to shape transcriptional regulation, controlling networks of genes regulated by PRC2

    The Polycomb repressive complex 2 deposits H3K27me3 and represses transposable elements in a broad range of eukaryotes

    Get PDF
    The mobility of transposable elements (TEs) contributes to evolution of genomes. Their uncontrolled activity causes genomic instability; therefore, expression of TEs is silenced by host genomes. TEs are marked with DNA and H3K9 methylation, which are associated with silencing in flowering plants, animals, and fungi. However, in distantly related groups of eukaryotes, TEs are marked by H3K27me3 deposited by the Polycomb repressive complex 2 (PRC2), an epigenetic mark associated with gene silencing in flowering plants and animals. The direct silencing of TEs by PRC2 has so far only been shown in one species of ciliates. To test if PRC2 silences TEs in a broader range of eukaryotes, we generated mutants with reduced PRC2 activity and analyzed the role of PRC2 in extant species along the lineage of Archaeplastida and in the diatom P. tricornutum. In this diatom and the red alga C. merolae, a greater proportion of TEs than genes were repressed by PRC2, whereas a greater proportion of genes than TEs were repressed by PRC2 in bryophytes. In flowering plants, TEs contained potential cis-elements recognized by transcription factors and associated with neighbor genes as transcriptional units repressed by PRC2. Thus, silencing of TEs by PRC2 is observed not only in Archaeplastida but also in diatoms and ciliates, suggesting that PRC2 deposited H3K27me3 to silence TEs in the last common ancestor of eukaryotes. We hypothesize that during the evolution of Archaeplastida, TE fragments marked with H3K27me3 were selected to shape transcriptional regulation, controlling networks of genes regulated by PRC2

    Conservation and turnover of miRNAs and their highly complementary targets in early branching animals

    Get PDF
    MicroRNAs (miRNAs) are crucial post-transcriptional regulators that have been extensively studied in Bilateria, a group comprising the majority of extant animals, where more than 30 conserved miRNA families have been identified. By contrast, bilaterian miRNA targets are largely not conserved. Cnidaria is the sister group to Bilateria and thus provides a unique opportunity for comparative studies. Strikingly, like their plant counterparts, cnidarian miRNAs have been shown to predominantly have highly complementary targets leading to transcript cleavage by Argonaute proteins. Here, we assess the conservation of miRNAs and their targets by small RNA sequencing followed by miRNA target prediction in eight species of Anthozoa (sea anemones and corals), the earliest-branching cnidarian class. We uncover dozens of novel miRNAs but only a few conserved ones. Further, given their high complementarity, we were able to computationally identify miRNA targets in each species. Besides evidence for conservation of specific miRNA target sites, which are maintained between sea anemones and stony corals across 500 Myr of evolution, we also find indications for convergent evolution of target regulation by different miRNAs. Our data indicate that cnidarians have only few conserved miRNAs and corresponding targets, despite their high complementarity, suggesting a high evolutionary turnover

    Some flies do not play ping-pong.

    No full text
    Genome integrity in animals depends on silencing of mobile elements by Piwi-interacting RNAs (piRNAs). A new study in this issue of PLOS Biology reveals recent evolutionary losses of key piRNA biogenesis factors in flies, highlighting adaptability by rapid shift to alternative piRNA biogenesis strategies

    The methyltransferase HEN1 is required in Nematostella vectensis for microRNA and piRNA stability as well as larval metamorphosis.

    No full text
    Small non-coding RNAs (sRNAs) such as microRNAs (miRNAs), small interfering RNAs (siRNAs) and piwi-interacting RNAs (piRNAs) regulate the levels of endogenous, viral and transposable element RNA in plants (excluding piRNAs) and animals. These pathways are explored mainly in bilaterian animals, such as vertebrates, arthropods and nematodes, where siRNAs and piRNAs, but not miRNAs bind their targets with a perfect match and mediate the cleavage of the target RNA. Methylation of the 3' ends of piRNAs and siRNAs by the methyltransferase HEN1 protects these sRNAs from degradation. There is a noticeable selection in bilaterian animals against miRNA-mRNA perfect matching, as it leads to the degradation of miRNAs. Cnidarians (sea anemones, corals, hydroids and jellyfish), are separated from bilaterians by more than 600 million years. As opposed to bilaterians, cnidarian miRNAs frequently bind their targets with a nearly perfect match. Knowing that an ortholog of HEN1 is widely expressed in the sea anemone Nematostella vectensis, we tested in this work whether it mediates the stabilization of its sRNAs. We show that the knockdown of HEN1 in Nematostella results in a developmental arrest. Small RNA sequencing revealed that the levels of both miRNAs and piRNAs drop dramatically in the morphant animals. Moreover, knockdown experiments of Nematostella Dicer1 and PIWI2, homologs of major bilaterian biogenesis components of miRNAs and piRNAs, respectively, resulted in developmental arrest similar to HEN1 morphants. Our findings suggest that HEN1 mediated methylation of sRNAs reflects the ancestral state, where miRNAs were also methylated. Thus, we provide the first evidence of a methylation mechanism that stabilizes miRNAs in animals, and highlight the importance of post-transcriptional regulation in non-bilaterian animals

    Cell type-specific expression profiling unravels the development and evolution of stinging cells in sea anemone

    No full text
    Background: Cnidocytes are specialized cells that define the phylum Cnidaria. They possess an ``explosive'' organelle called cnidocyst that is important for prey capture and anti-predator defense. An extraordinary morphological and functional complexity of the cnidocysts has inspired numerous studies to investigate their structure and development However, the transcriptomes of the cells bearing these unique organelles are yet to be characterized, impeding our understanding of the genetic basis of their biogenesis. Results: In this study, we generated a nematocyte reporter transgenic line of the sea anemone Nematostella vectensis using the CRISPR/Cas9 system. By using a fluorescence-activated cell sorter (FACS), we have characterized cell type-specific transcriptomic profiles of various stages of cnidocyte maturation and showed that nematogenesis (the formation of functional cnidocysts) is underpinned by dramatic shifts in the spatiotemporal gene expression. Among the genes identified as upregulated in cnidocytes were Cnido-Jun and Cnido-Fos1-cnidarian-specific paralogs of the highly conserved c-Jun and c-Fos proteins of the stress-induced AP-1 transcriptional complex. The knockdown of the cnidocyte specific c-Jun homolog by microinjection of morpholino antisense oligomer results in disruption of normal nematogenesis. Conclusions: Here, we show that the majority of upregulated genes and enriched biochemical pathways specific to cnidocytes are uncharacterized, emphasizing the need for further functional research on nematogenesis. The recruitment of the metazoan stress-related transcription factor c-Fos/c-Jun complex into nematogenesis highlights the evolutionary ingenuity and novelty associated with the formation of these highly complex, enigmatic, and phyletically unique organelles. Thus, we provide novel insights into the biology, development and evolution of cnidocytes

    An ancient pan-cnidarian microRNA regulates stinging capsule biogenesis in Nematostella vectensis

    No full text
    Summary: An ancient evolutionary innovation of a novel cell type, the stinging cell (cnidocyte), appeared >600 million years ago in the phylum Cnidaria (sea anemones, corals, hydroids, and jellyfish). A complex bursting nano-injector of venom, the cnidocyst, is embedded in cnidocytes and enables cnidarians to paralyze their prey and predators, contributing to this phylum’s evolutionary success. In this work, we show that post-transcriptional regulation by a pan-cnidarian microRNA, miR-2022, is essential for biogenesis of these cells in the sea anemone Nematostella vectensis. By manipulation of miR-2022 levels in a transgenic reporter line of cnidocytes, followed by transcriptomics, single-cell data analysis, prey paralysis assays, and cell sorting of transgenic cnidocytes, we reveal that miR-2022 enables cnidocyte biogenesis in Nematostella, while exhibiting a conserved expression domain with its targets in cnidocytes of other cnidarian species. Thus, here we revealed a functional basis to the conservation of one of nature’s most ancient microRNAs

    Conservation and turnover of miRNAs and their highly complementary targets in early branching animals

    Get PDF
    MicroRNAs (miRNAs) are crucial post-transcriptional regulators that have been extensively studied in Bilateria, a group comprising the majority of extant animals, where more than 30 conserved miRNA families have been identified. By contrast, bilaterian miRNA targets are largely not conserved. Cnidaria is the sister group to Bilateria and thus provides a unique opportunity for comparative studies. Strikingly, like their plant counterparts, cnidarian miRNAs have been shown to predominantly have highly complementary targets leading to transcript cleavage by Argonaute proteins. Here, we assess the conservation of miRNAs and their targets by small RNA sequencing followed by miRNA target prediction in eight species of Anthozoa (sea anemones and corals), the earliest-branching cnidarian class. We uncover dozens of novel miRNAs but only a few conserved ones. Further, given their high complementarity, we were able to computationally identify miRNA targets in each species. Besides evidence for conservation of specific miRNA target sites, which are maintained between sea anemones and stony corals across 500 Myr of evolution, we also find indications for convergent evolution of target regulation by different miRNAs. Our data indicate that cnidarians have only few conserved miRNAs and corresponding targets, despite their high complementarity, suggesting a high evolutionary turnover
    corecore