78 research outputs found

    Increased Short-Term Variability of the QT Interval in Professional Soccer Players: Possible Implications for Arrhythmia Prediction

    Get PDF
    BACKGROUND: Sudden cardiac death in competitive athletes is rare but it is significantly more frequent than in the normal population. The exact cause is seldom established and is mostly attributed to ventricular fibrillation. Myocardial hypertrophy and slow heart rate, both characteristic changes in top athletes in response to physical conditioning, could be associated with increased propensity for ventricular arrhythmias. We investigated conventional ECG parameters and temporal short-term beat-to-beat variability of repolarization (STV(QT)), a presumptive novel parameter for arrhythmia prediction, in professional soccer players. METHODS: Five-minute 12-lead electrocardiograms were recorded from professional soccer players (n = 76, all males, age 22.0±0.61 years) and age-matched healthy volunteers who do not participate in competitive sports (n = 76, all males, age 22.0±0.54 years). The ECGs were digitized and evaluated off-line. The temporal instability of beat-to-beat heart rate and repolarization were characterized by the calculation of short-term variability of the RR and QT intervals. RESULTS: Heart rate was significantly lower in professional soccer players at rest (61±1.2 vs. 72±1.5/min in controls). The QT interval was prolonged in players at rest (419±3.1 vs. 390±3.6 in controls, p<0.001). QTc was significantly longer in players compared to controls calculated with Fridericia and Hodges correction formulas. Importantly, STV(QT) was significantly higher in players both at rest and immediately after the game compared to controls (4.8±0.14 and 4.3±0.14 vs. 3.5±0.10 ms, both p<0.001, respectively). CONCLUSIONS: STV(QT) is significantly higher in professional soccer players compared to age-matched controls, however, further studies are needed to relate this finding to increased arrhythmia propensity in this population

    Age and gender dependent heart rate circadian model development and performance verification on the proarrhythmic drug case study

    Get PDF
    BACKGROUND: There are two main reasons for drug withdrawals at the various levels of the development path – hepatic and cardiac toxicity. The latter one is mainly connected with the proarrhythmic potency and according to the present practice is supposed to be recognized at the pre-clinical (in vitro and animal in vivo) or clinical level (human in vivo studies). There are, although, some limitations to all the above mentioned methods which have led to novel in vitro – in vivo extrapolation methods being introduced. With the use of in silico implemented mathematical and statistical modelling it is possible to translate the in vitro findings into the human in vivo situation at the population level. Human physiology is influenced by many parameters and one of them which needs to be properly accounted for is a heart rate which follows the circadian rhythm. We described such phenomenon statistically which enabled the improved assessment of the drug proarrhythmic potency. METHODS: A publicly available data set describing the circadian changes of the heart rate of 18 healthy subjects, 5 males (average age 36, range 26–45) and 13 females (average age 34, range 20–50) was used for the heart rate model development. External validation was done with the use of a clinical research database containing heart rate measurements derived from 67 healthy subjects, 34 males and 33 females (average age 33, range 17–72). The developed heart rate model was then incorporated into the ToxComp platform to simulate the impact of circadian variation in the heart rate on QTc interval. The usability of the combined models was assessed with moxifloxacin (MOXI) as a model drug. RESULTS: The developed heart rate model fitted well, both to the training data set (RMSE = 128 ms and MAPE = 12.3%) and the validation data set (RMSE = 165 ms and MAPE = 17.1%). Simulations performed at the population level proved that the combination of the IVIVE platform and the population variability description allows for the precise prediction of the circadian variation of drugs proarrhythmic effect. CONCLUSIONS: It can be concluded that a flexible and practically useful model describing the heart rate circadian variation has been developed and its performance was verified
    corecore