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Abstract

Background: There are two main reasons for drug withdrawals at the various levels
of the development path – hepatic and cardiac toxicity. The latter one is mainly
connected with the proarrhythmic potency and according to the present practice is
supposed to be recognized at the pre-clinical (in vitro and animal in vivo) or clinical
level (human in vivo studies). There are, although, some limitations to all the above
mentioned methods which have led to novel in vitro – in vivo extrapolation methods
being introduced. With the use of in silico implemented mathematical and statistical
modelling it is possible to translate the in vitro findings into the human in vivo
situation at the population level. Human physiology is influenced by many
parameters and one of them which needs to be properly accounted for is a heart
rate which follows the circadian rhythm. We described such phenomenon
statistically which enabled the improved assessment of the drug proarrhythmic
potency.

Methods: A publicly available data set describing the circadian changes of the heart
rate of 18 healthy subjects, 5 males (average age 36, range 26–45) and 13 females
(average age 34, range 20–50) was used for the heart rate model development.
External validation was done with the use of a clinical research database containing
heart rate measurements derived from 67 healthy subjects, 34 males and 33 females
(average age 33, range 17–72). The developed heart rate model was then
incorporated into the ToxComp platform to simulate the impact of circadian
variation in the heart rate on QTc interval. The usability of the combined models was
assessed with moxifloxacin (MOXI) as a model drug.

Results: The developed heart rate model fitted well, both to the training data set
(RMSE = 128 ms and MAPE = 12.3%) and the validation data set (RMSE = 165 ms
and MAPE = 17.1%). Simulations performed at the population level proved that the
combination of the IVIVE platform and the population variability description allows
for the precise prediction of the circadian variation of drugs proarrhythmic effect.

Conclusions: It can be concluded that a flexible and practically useful model
describing the heart rate circadian variation has been developed and its performance
was verified.
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Introduction
The withdrawal of several marketed drugs in the last decade, extensive re-labeling and a

high attrition rate, especially in the late stage of the drug development process, due to the

QT prolonging liability or TdP occurrence, have all established that proarrhythmia assess-

ment is a primary focus of regulatory bodies and the pharmaceutical industry. Thus careful

evaluation of the proarrhythmic potential of an investigated compound is an integral

element of the safety profile required for the approval of new drugs. There are several avail-

able models utilized for the assessment of drugs proarrhythmic potency at various levels of

drug development. The most commonly utilized and probably most reasonable pathways at

the non-clinical stage of development include in vitro models where the human ionic chan-

nels are heterologously expressed in non-human (i.e. XO, CHO) and human (i.e. HEK) cells,

in vivo/ex vivo animal studies where suggested species are used for the drug influence evalu-

ation at the cardiac level [1]. Novel techniques include the human stem cells derived

cardiomyocytes which, however, still lack the standard methodology [2]. At the early clinical

development stage the currently best available, yet costly and still not perfect thorough QT/

QTc clinical studies (TQTs) [3] are introduced to assess the QT prolongation by the candi-

date drug as compared with placebo and positive control. Currently there is a translational

gap in the quantitative extrapolation of the in vitro or animal studies’ outcomes to the

human situation. There are some rules of thumb [4] and decision trees [5] available to quali-

tatively (yes/no) predict QT prolongation potential in humans from in vitro assays, particu-

larly hERG channel inhibition assays. Moreover, there are no methods available to combine

in vitro assay information from multiple ion channels (INa, ICa, IKr, IKs) with human physio-

logical and demographic data to predict QT prolongation in humans. Physiologically based

in silico methods have a potential to bridge the translation gap between the in vitro electro-

physiological data gained from in vitro/ex-vivo studies and human QT liability. We have

recently developed a so called “bottom-up” in silico platform (ToxComp) which combines a

physiologically based electrophysiological model of human left ventricular cardiomyocytes

and a database of human physiological, genotypic and demographic data enabling the

prediction of the QT prolongation in humans based on the in vitro data [6,7]. ToxComp

has been previously used to predict QT prolongation liability of various compounds [8,9].

Until now ToxComp has predicted the absolute QT prolongation liability of a compound

assuming that the physiological parameter values are constant during the simulation, which

limited its ability to simulate clinical scenarios. With the addition of the circadian variation

model in ToxComp, the platform could potentially be employed in simulating clinical

scenarios before conducting clinical studies with an aim to optimize the designs and reduce

the chances of the failure of these costly and time intensive clinical studies.

A circadian rhythm is a biological process that displays an endogenous, entrainable

oscillation of roughly 24 hours [10]. In humans there are multiple physiological

processes which follow the circadian clock, including the heart rate (HR) [11]. In our

study context, however, the circadian rhythm of the heart rate is one of the most

important, since it may both influence the QT length and interfere with the drug effect

[12]. The mathematical and statistical modelling of the circadian variation of the heart

rate has been previously studied. Nakagawa and colleagues reported results of a study

which involved 44 (but 20 were included into the analysis phase) healthy individuals.

Subjects showed a significant circadian heart rate rhythm and based on the collected

data the authors proposed a cosinor model to describe such phenomenon, although
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they did not differentiate between male and females which limits the practical use of

the derived model [13]. Similar models, carrying identical limitations were proposed

independently by Massin and colleagues and Li and colleagues [14,15]. 57 healthy

children and 115 healthy, non-smoking adults were included respectively and the 24-hours

ECG measurements were used to derive the regression models. Probably the most detailed

analysis of the heart rate variation was presented by Bonnemeier et al. [16]. A large

group of 166 healthy individuals (81 females, 85 males) characterized by a wide

age range (20–70 years) was studied. The authors analysed differences of heart rate

circadian profiles for hourly aggregated measurements in a groups stratified by age

decades, separately for female and male subjects. The authors did not, however,

model their data. There is also a large number of publications where circadian

heart rate variation is discussed among various subpopulations (athletes, truck

drivers, welders) and diseases (myotonic dystrophy, angor patients) [17-20]. Although to

our best knowledge none of them proposed a model flexible enough and described in

enough detail to be directly applicable for the generation of a virtual human population

where heart rate is an attribute specific for every individual, and this was the main reason

we decided to develop a new model.
Aims of the study

We aimed to develop and validate a model describing the gender and age dependent

circadian rhythm of the heart rate in European Caucasian healthy subjects. Additional

aims included quality and usability assessment of the model when incorporated into

the ToxComp platform. Its usability, in combination with other parameters describing

demographic (age, gender), physiological (i.e. cardiomyocytes characteristics, plasma ions

concentration) and genetic variability in a population, was tested in the virtual clinical trial.
Materials and methods
PhysioNet data set description

The analyzed data set was obtained from the PhysioBank, which is an archive of

digitized sets of data reflecting physiological signals. The data warehouse contains over

50 various freely available databases, and for modelling purposes the MIT-BIH Normal

Sinus Rhythm Database was used [21]. There were a total of 18 subjects, 5 males (average

age 36, range 26–45) and 13 females (average age 34, range 20–50). For each subject up

to 24 hours of RR recordings were available. Subjects, on average, had 94,440 individual

RR measurements (range 73,300-115,900). In order to decrease the significant computa-

tional burden it was necessary to reduce the number of RR measurements per subject. RR

averaging in one-hour, half-hour and 15-minute ‘time windows’ was found inadequate

due to its variability reduction property. Stable results were obtained after sampling RR

measurements every 1 minute.
Validation data set

Model validation was performed with the use of a completely independent data set. Data

was derived from Cracow’s clinical research database (1st Department of Cardiology and

Hypertension, Jagiellonian University Medical College). There were a total of 67 healthy

subjects in the validation data set, 34 males and 33 females (average age 33, range 17–72).
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Validated oscillometric SpaceLabs 90207 monitors (Redmond, WA, USA) fitted with the

appropriate cuff size were programmed to obtain readings every 15 minutes from 08.00 to

22.00 and every 30 minutes from 22.00 to 08.00. Each reading included systolic/diastolic

blood pressure, mean arterial pressure and heart rate. Subjects, on average, had 71 heart

rate measurements (range 35–99). RR interval length was calculated based on the heart

rate measurement results.

Model usability testing

To test the usability of the implemented circadian rhythm model within the ToxComp

platform, we have chosen moxifloxacin (MOXI), the most commonly used positive

control in TQT studies as the model compound. The ToxComp system was used to

simulate the drugs triggered ECG modification. The ToxComp platform combines

a physiologically based electrophysiological model of human left ventricular

cardiomyocytes (ten Tusscher - TNNP) and a database of human physiological,

genotypic and demographic data enabling the prediction of the QT prolongation in

humans based on the in vitro data [7,22]. To account for the heterogeneities in

ionic currents between endocardial, midmyocardial and epicardial cells 1D fibre

paced at the epicardial side was constructed. The 50:30:20 distribution of the endo-,

mid- and epicardial cells was used together with a diffusion coefficient equal to

0.0016 cm2/ms. The Forward Euler method was used to integrate model equations.

Integration results were used to calculate a pseudo-ECG. First and last QRS were

excluded from the pseudo-ECG. A space step and a time step were set to Δx=0.01 mm

and Δt=0.01 ms, total simulation time was set to 10,000 ms.

To account for the drugs triggered ionic currents modifications a specific equation

describing the current of interest was multiplied by the inhibition factor accordingly to

the in vitro values provided by the literature search, which described the concentration

dependent ionic current inhibition. The inhibition factor was calculated with the use of

the Hill equation [Equation 1].

Inhibition Factor ¼ 1
1þ IC50=DRUG CONCENTRATIONð Þn ð1Þ

where:

IC50 - concentration responsible for the 50% inhibition of the ionic current

n - Hill equation parameter

DRUG CONCENTRATION - active drug concentration [μM]

The population variability of other parameters was mimicked by applying the virtual

population generator as described previously [23,24]. The circadian heart rate variability

was introduced into a simulation by the use of the model described below.

3.8 μM of MOXI was used for the operational concentration, mimicking the average

maximum free plasma concentration (Cmax) after a 400 mg oral dose by correcting the

total Cmax concentration obtained from the available literature with human plasma pro-

tein binding [25,26]. The IC50 values for various cardiac ion channels were obtained

from the tox-database.net system and are presented in Table 1 [27]. For the simulation

studies only IKr data was used (with Hill equation parameter n = 1) since for the tested

MOXI concentration INa and ICa inhibition were negligible.



Table 1 Moxifloxacin IC50 values for various cardiac ionic currents

Current IC50 [μM] Reference

IKr 29 [28]

INa 127.2 [29]

ICa 168.9 [29]
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The ToxComp simulations, at a MOXI concentration equal to Cmax at different times

of the day (4.00, 8.00, 12.00, 16.00, 20.00, and 24.00), were performed in triplicate trials

of 20 individuals (total 3×20=60) with an equal number of male and female subjects

(10/10 in each study). Baseline QT and QTcF (QT interval corrected by heart rate using

Fridericia correction method [30]) were also obtained for each subject at the above

defined time points of the day by simulating a response at MOXI concentration equal

to zero. This allowed us to apply two baseline correction formulas i.e., (1) Single point

baseline correction when the average baseline QTcF estimates from all subjects was

used to obtain baseline corrected QTcF (ΔQTcF) and (2) Individualised baseline correc-

tion (ΔQTcFi) when baseline QTcF at a given time of day for each individual subject

was used to calculate ΔQTcF. The developed circadian effect model was validated by

comparing the simulated results with respective clinical outcomes obtained using single

point and individualised baseline correction formula.

Results
Data modelling

The aim of this section is to describe the steps undertaken to create a multivari-

ate linear regression model of the relationship between RR (dependent variable)

and a set of independent variables which were comprised of Age, Sex and Time

of the day (abbreviated as Hour). In addition to the model development, the

simulation of RR values from the model was given attention. During the model

development phase it was found that the distribution of RR data was mildly

skewed to the right. This issue was dealt with the use of log-transformation of

RR measurements.

RR model

The preliminary model included dummy variables for each Hour, dummy variable for

Sex, quadratic effect of Age and all pairwise interactions. Many terms in this prelimin-

ary model were found not significant, as indicated by the robust t-tests for model

coefficients. The robust t-test takes into account the dependence between observations

coming from the same subject. Non-significant terms (p-value>0.05) were dropped

from the model sequentially one by one. Additionally it was found that the Hour vari-

able may be modelled more parsimoniously by a linear combination of sine and cosine

functions. The final model received the following form:

log RRð Þ ¼ β0 þ β1Sexþ β2Ageþ β3Age
2 þ β4 sin

2π
24

Hour

� �

þβ5 cos
2π
24

Hour

� �
þ β6 sin

2π
24

Hour

� �
� Sexþ β7 cos

2π
24

Hour

� �
� Sexþ ε; ε∼N 0; σð Þ;

ð2Þwhere:
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β – regression coefficient,

ε – normally distributed error term,

σ – standard deviation of error term,

Sex – 1 for males, 0 for females,

Age – age in years,

Hour – value from 0–24 range.

The model parameters were estimated using the maximum likelihood method in the

R system for statistical computing and are given below [31]:

^log RRð Þ ¼ 7:163þ 0:0961 Sex� 0:0243 Age þ 0:00027 Age2

þ 0:1055 sin
2π
24

Hour

� �
þ 0:0664 cos

2π
24

Hour

� �

� 0:0155 sin
2π
24

Hour

� �
� Sexþ 0:0608 cos

2π
24

Hour

� �
� Sex; σ

¼ 0:15 ð3Þ

All coefficients were statistically significant. Figure 1 shows the graphical representation
of the model.

The visual predictive checks showed an overall good fit of the model to the data. The

dispersion of residuals did not exhibit dependence upon any of the explanatory

variables. The coefficient of determination R2 = 0.39, i.e. 39% of the variation observed

in log(RR) can be explained by the estimated regression equation.

For the PhysioNet data set RMSE (Root Mean Squared Error) = 128 ms and MAPE

(Mean Absolute Percentage Error) = 12.3%. In the case of the validation data set RMSE

= 165 ms and MAPE = 17.1%. Figure 2 shows the representative two best and two

worst fitted cases from the validation data set.

It is a well-known fact that estimators derived by the method of maximum likelihood

have many desirable properties, on the other hand ML estimators are sensitive to the

presence of outliers in the data. In order to check the stability of estimates the regres-

sion parameters were additionally estimated using a wide range of, so called, robust

regression estimators. Parameter estimates were virtually unchanged from the maximum

likelihood ones.

The residuals (ε̂) within each subject showed strong temporal dependence. Consequently

the stationary autoregressive model of the following form was fitted:

ε̂t ¼
XP
p¼1

αp ε̂t�p þ η; η∼N 0; τð Þ ð4Þ

where:

α – autoregression coefficient

η – normally distributed error term

τ – standard deviation of error term

P – order of autoregression

It was found that only a large value of P (P = 180) was able to account for the long

memory observed in the data and gives a satisfactory fit. The estimate of the standard

deviation of error term was 0.096.



Figure 1 Graphical representation of the RR model for females (A) and males (B) respectively, left
inner axis is age.
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The following algorithm facilitates the generation of random RR values from the

estimated model:

1. Generate random sequence from equation [Eq. 4].

2. Choose the values of explanatory variables and using [Eq. 3] compute ^log RRð Þ at
the selected time points.

3. Add the computed ^log RRð Þ to values generated in Step 1 at the selected time

points, exponentiate the result.

An electronic supplement (Additional file 1) to the article contains a fully functional

Excel implementation of the model.



Figure 2 Representative two best (A - Female 41 years old, B - Male 36 years old) and two worst
(C - Female 27 years old, D - Male 30 years old) fitted cases from the validation data set (dashed
lines – 95% prediction bands).
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Model usability results

Figures 3 and 4 present the results of the model usability testing. Two sets of data

obtained after running the virtual study as described in the ‘Materials and methods’

section were obtained.

QT response at a MOXI concentration of 3.8 μM at different times of the day

was simulated using the ToxComp platform. When single point baseline correc-

tion was applied, the ΔQTcF obtained at different times of the day at a MOXI

concentration of 3.8 μM is shown in Figure 3. Generally, during TQT studies an

oral dose of MOXI 400 mg is given in the morning, hence Cmax is obtained

between morning and noon i.e. between 8.00 to 12.00. At 8.00 and 12.00, the

simulated ΔQTcF were respectively 10.75 ms and 15.87 ms, which is consistent
Figure 3 ΔQTcF at MOXI concentration of 3.8 mM at different times of day presented as an average
value ±SD.



Figure 4 ΔQTcFi with individualized and circadian baseline correction presented as an average
value ±SD.
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with the clinically observed ΔQTcF of 10–15 ms [32]. When an individualized

baseline with circadian correction was applied, ΔQTcFi of 5–6 ms was obtained

at all times of day which is also consistent with the clinically observed ΔQTcFi of

6–7 ms [21].
Discussion
The obtained results indicate that the implemented heart rate circadian rhythm

model within the ToxComp platform is able to simulate the circadian variability

of a model drug. Comparison with the published clinical trial results for the

model drug suggest that the ToxComp system, with the built-in heart rate model,

is able to realistically represent cardiac electrophysiological drug effect with its

variability, regardless of the correction method. However, as there are a large

number of parameters describing the physiological variability in the virtual popu-

lation generator ToxComp module, it is hard to precisely assess the net influence

of the heart rate on the system output, and a separate study will be run for such

a purpose. Although results of the simulations run without the use of a heart rate

model, i.e. with the use of a constant value of HR during the day, suggested that

an important component is missing (internal not-published results).

The goodness-of-fit metrics indicated a good fit to the data, e.g. Mean Absolute Per-

centage Error equals to 12.3%. It could, although, suggest that the model overfits the

data. This was however contradicted by the validation results with MAPE equals to

17.1%. The result was obtained despite the differences in the age and sex distribution

of the subjects between the training and validation data sets.

The main limitation of the model is the size of the training data set. Despite

the fact that every subject gave rise to thousands of measurements, the number

of independent subjects is still only 18. The future research will aim to combine

data from experiments which acquire sparse RR data, e.g. every 20–40 minutes,

with dense PhysioBank data.
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Conclusions
It can be concluded that a flexible and practically useful model describing the

heart rate circadian variation has been developed. Its structure allows for easy

implementation, which is greatly facilitated by the provided electronic supplement,

and its use in simulation studies.

Additional file

Additional file 1: Electronic Supplement 1.
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