19 research outputs found

    Nonconventional localizations of cytosolic aminoacyl-tRNA synthetases in yeast and human cells

    Get PDF
    International audienceKeywords: aaRS tRNA Yeast Human Microscopy Fractionation MTS NLS a b s t r a c t By definition, cytosolic aminoacyl-tRNA synthetases (aaRSs) should be restricted to the cytosol of eukary-otic cells where they supply translating ribosomes with their aminoacyl-tRNA substrates. However, it has been shown that other translationally-active compartments like mitochondria and plastids can simultaneously contain the cytosolic aaRS and its corresponding organellar ortholog suggesting that both forms do not share the same organellar function. In addition, a fair number of cytosolic aaRSs have also been found in the nucleus of cells from several species. Hence, these supposedly cytosolic-restricted enzymes have instead the potential to be multi-localized. As expected, in all examples that were studied so far, when the cytosolic aaRS is imported inside an organelle that already contains its bona fide corresponding organellar-restricted aaRSs, the cytosolic form was proven to exert a nonconventional and essential function. Some of these essential functions include regulating homeostasis and protecting against various stresses. It thus becomes critical to assess meticulously the subcellular localization of each of these cytosolic aaRSs to unravel their additional roles. With this objective in mind, we provide here a review on what is currently known about cytosolic aaRSs multi-compartmentalization and we describe all commonly used protocols and procedures for identifying the compartments in which cytosolic aaRSs relocal-ize in yeast and human cells

    Proteasome subunit variants cause neurosensory syndrome combining deafness and cataract due to proteotoxic stress

    Get PDF
    The ubiquitin–proteasome system degrades ubiquitin‐modified proteins to maintain protein homeostasis and to control signalling. Whole‐genome sequencing of patients with severe deafness and early‐onset cataracts as part of a neurological, sensorial and cutaneous novel syndrome identified a unique deep intronic homozygous variant in the PSMC3 gene, encoding the proteasome ATPase subunit Rpt5, which lead to the transcription of a cryptic exon. The proteasome content and activity in patient\u27s fibroblasts was however unaffected. Nevertheless, patient\u27s cells exhibited impaired protein homeostasis characterized by accumulation of ubiquitinated proteins suggesting severe proteotoxic stress. Indeed, the TCF11/Nrf1 transcriptional pathway allowing proteasome recovery after proteasome inhibition is permanently activated in the patient\u27s fibroblasts. Upon chemical proteasome inhibition, this pathway was however impaired in patient\u27s cells, which were unable to compensate for proteotoxic stress although a higher proteasome content and activity. Zebrafish modelling for knockout in PSMC3 remarkably reproduced the human phenotype with inner ear development anomalies as well as cataracts, suggesting that Rpt5 plays a major role in inner ear, lens and central nervous system development

    Field survey and numerical simulation of the 21 November 2004 tsunami at Les Saintes (Lesser Antilles)

    No full text
    International audienceAlthough a few historical tsunamis have occurred in the Lesser Antilles region, their characteristics are poorly documented due to the ephemeral nature of the associated signatures. Recently, a tsunami was generated following a magnitude Mw 6.3 earthquake that occurred on 21 November 2004 between Guadeloupe and Dominica. This was one of the two largest historical earthquakes recorded in this area in the last century. A field survey allowed us to characterize the tsunami which affected Les Saintes, the southern coast of Basse‐Terre (Guadeloupe) and northern Dominica. We used these data to constrain a numerical simulation of tsunami generation and propagation. The 21 November tsunami provides a unique opportunity to further constrain the models of brittle deformation in the back arc region proposed by previous tectonic investigations, to characterize the tsunami signatures and to improve regional hazards evaluation

    Numerical simulation of the last flank-collapse event of Montagne Pelée, Martinique, Lesser Antilles

    No full text
    International audienceWe model the submarine emplacement of a debris avalanche generated by the last flank-collapse event of Montagne Pelée volcano. We estimate the collapsed volume (1.7 km 3) using both the volume of the missing material in the horseshoe-shaped structure and the volume of submarine deposits. This avalanche is treated as the gravitational flow of a homogeneous continuum. It is simulated by a finite-difference model, solving mass and momentum conservation equations, that are depth-averaged over the slide thickness. Numerical simulations show that the emplacement of this debris-avalanche can be suitably modeled by a Coulomb-type friction law with a variable friction angle below 10°. We propose that variations of the friction angle are mainly influenced by the thickness of the flowing mass

    Numerical simulation of the last flank-collapse event of Montagne Pelée, Martinique, Lesser Antilles

    No full text
    International audienceWe model the submarine emplacement of a debris avalanche generated by the last flank-collapse event of Montagne Pelée volcano. We estimate the collapsed volume (1.7 km 3) using both the volume of the missing material in the horseshoe-shaped structure and the volume of submarine deposits. This avalanche is treated as the gravitational flow of a homogeneous continuum. It is simulated by a finite-difference model, solving mass and momentum conservation equations, that are depth-averaged over the slide thickness. Numerical simulations show that the emplacement of this debris-avalanche can be suitably modeled by a Coulomb-type friction law with a variable friction angle below 10°. We propose that variations of the friction angle are mainly influenced by the thickness of the flowing mass

    Measurement of total nitrogen and assimilable nitrogen in grape juice to assess vine nitrogen status

    No full text
    Five indicators of vine nitrogen status were compared for their accuracy to differentiate two levels of nitrogen fertilization (0 and 45 kg N / ha) : petiole total nitrogen content, leaf blade color intensity measured by a device called “N-tester”, grape juice total nitrogen content, grape juice assimilable nitrogen content and grape juice ammonium content. Differences in must total nitrogen content and must assimilable nitrogen content were highly significant between fertilization levels. They can be considered as two powerful tools to assess vine nitrogen status. Levels of must total nitrogen content and must assimilable nitrogen content were highly correlated. Mineralizing must in order to measure its total nitrogen content is difficult, mainly because of the presence of large amounts of sugar. This operation can take more than 12 hours and it can fail because of caramelization and the appearance of foam. We propose mineralizing must by means of microwave. Complete mineralization was obtained in only one hour. No foam or caramelization was observed on any of the samples mineralized. Vine nitrogen uptake is likely to vary to a considerable extend with soil parameters, even if no nitrogen fertilization is applied. Figuring among those parameters are: soil organic matter content, organic matter C/N ratio and soil organic matter turnover. The latter depends mainly on soil temperature, soil aeration, soil pH and soil moisture content. Differences in vine nitrogen status depending on the soil type were clearly evidenced by measuring must total nitrogen and must assimilable nitrogen at ripeness. Limited nitrogen uptake, as a result of particular soil conditions, can limit vine vigor and be a quality enhancing factor in red grape production. This emphasizes the role of moderate environmental stress in the production of high quality potential grapes

    Cex1 is a component of the COPI intracellular trafficking machinery

    No full text
    International audienceCOPI (coatomer complex I) coated vesicles are involved in Golgi-to-ER and intra-Golgi trafficking pathways, and mediate retrieval of ER resident proteins. Functions and components of the COPI-mediated trafficking pathways, beyond the canonical set of Sec/Arf proteins, are constantly increasing in number and complexity. In mammalian cells, GORAB, SCYL1 and SCYL3 proteins regulate Golgi morphology and protein glycosylation in concert with the COPI machinery. Here, we show that Cex1, homologous to the mammalian SCYL proteins, is a component of the yeast COPI machinery, by interacting with Sec27, Sec28 and Sec33 (Ret1/Cop1) proteins of the COPI coat. Cex1 was initially reported to mediate channeling of aminoacylated tRNA outside of the nucleus. Our data show that Cex1 localizes at membrane compartments, on structures positive for the Sec33 α-COP subunit. Moreover, the Wbp1 protein required for N-glycosylation and interacting via its di-lysine motif with the Sec27 ÎČâ€Č-COP subunit is mis-targeted in cex1Δ deletion mutant cells. Our data point to the possibility of developing Cex1 yeast-based models to study neurodegenerative disorders linked to pathogenic mutations of its human homologue SCYL1
    corecore