8 research outputs found

    Hydropower Energy Simulation Using Mike 11 Model; A Case Study In South Germany\u27s Small Run-Of-River Hydropower Plants

    Full text link
    Renewable energy production is a basic supplement to stabilize rapidly increasing global energy demand and skyrocketing energy price as well as to balance the fluctuation of supply from non-renewable energy sources at electrical grid hubs. The European energy traders, government and private company energy providers and other stakeholders have been, since recently, a major beneficiary, customer and clients of Hydropower simulation solutions. The relationship between rainfall-runoff model outputs and energy productions of hydropower plants has not been clearly studied. In this research, association of rainfall, catchment characteristics, river network and runoff with energy production of a particular hydropower station is examined. The essence of this study is to justify the correspondence between runoff extracted from calibrated catchment and energy production of hydropower plant located at a catchment outlet; to employ a unique technique to convert runoff to energy based on statistical and graphical trend analysis of the two, and to provide environment for energy forecast. For rainfall-runoff model setup and calibration, MIKE 11 NAM model is applied, meanwhile MIKE 11 SO model is used to track, adopt and set a control strategy at hydropower location for runoff-energy correlation. The model is tested at two selected micro run-of-river hydropower plants located in South Germany. Two consecutive calibration is compromised to test the model; one for rainfall-runoff model and other for energy simulation. Calibration results and supporting verification plots of two case studies indicated that simulated discharge and energy production is comparable with the measured discharge and energy production respectively

    Event-based model calibration approaches for selecting representative distributed parameters in semi-urban watersheds

    Get PDF
    The final publication is available at Elsevier via http://dx.doi.org/10.1016/j.advwatres.2018.05.013 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license http://creativecommons.org/licenses/by-nc-nd/4.0/The objective of this study is to propose an event-based calibration approach for selecting representative semi-distributed hydrologic model parameters and to enhance peak flow prediction at multiple sites of a semi-urban catchment. The performance of three multi-site calibration approaches (multi-site simultaneous (MS-S), multi-site average objective function (MS-A) and multi-event multi-site (ME-MS)) and a benchmark at-catchment outlet (OU) calibration method, are compared in this study. Additional insightful contributions include assessing the nature of the spatio-temporal parameter variability among calibration events and developing an advanced event-based calibration approach to identify skillful model parameter-sets. This study used a SWMM5 hydrologic model in the Humber River Watershed located in Southern Ontario, Canada. For MS-S and OU calibration methods, the multi-objective calibration formulation is solved with the Pareto Archived Dynamically Dimensioned Search (PA-DDS) algorithm. For the MS-A and ME-MS methods, the single objective calibration formulation is solved with the Dynamically Dimensioned Search (DDS) algorithm. The results indicate that the MS-A calibration approach achieved better performance than other considered methods. Comparison between optimized model parameter sets showed that the DDS optimization in MS-A approach improved the model performance at multiple sites. The spatial and temporal variability analysis indicates a presence of uncertainty on sensitive parameters and most importantly on peak flow responses in an event-based calibration process. This finding implied the need to evaluate potential model parameters sets with a series of calibration steps as proposed herein. The proposed calibration and optimization formulation successfully identified representative model parameter set, which is more skillful than what is attainable when using simultaneous multi-site (MS-S), multi-event multi-site (MS-ME) or at basin outlet (OU) approach.Natural Sciences and Engineering Research Council of Canada [NETGP 451456

    Identification of Hydrological Models for Enhanced Ensemble Reservoir Inflow Forecasting in a Large Complex Prairie Watershed

    No full text
    Accurate and reliable flow forecasting in complex Canadian prairie watersheds has been one of the major challenges faced by hydrologists. In an attempt to improve the accuracy and reliability of a reservoir inflow forecast, this study investigates structurally different hydrological models along with ensemble precipitation forecasts to identify the most skillful and reliable model. The key goal is to assess whether short- and medium-range ensemble flood forecasting in large complex basins can be accurately achieved by simple conceptual lumped models (e.g., SACSMA with SNOW17 and MACHBV with SNOW17) or it requires a medium level distributed model (e.g., WATFLOOD) or an advanced macroscale land-surface based model (VIC coupled with routing module (RVIC)). Eleven (11)-member precipitation forecasts from second-generation Global Ensemble Forecast System reforecast (GEFSv2) were used as inputs. Each of the ensemble members was bias-corrected by Empirical Quantile Mapping method using the Canadian Precipitation Analysis (CaPA) as a training/verification dataset. Forecast evaluation is performed for 1-day up to 8-days forecast lead times in a 6-month hindcast period. Results indicate that bias-correcting precipitation forecasts using verifying datasets (such as CaPA) for a training period of at least two years before the forecast time, produces skillful ensemble hydrological forecasts. A comparison of models in forecast mode shows that the two lumped models (SACSMA and MACHBV) can provide better overall forecast performance than the benchmark WATFLOOD and the macroscale Variable Infiltration Capacity (VIC) model. However, for shorter lead-times, particularly up to day 3, the benchmark distributed model provides competitive reliability, as compared to the lumped models. In general, the SACSMA model provided better forecast quality, reliability and differentiation skill than other considered models at all lead times

    Hydrological Analysis of Extreme Rain Events in a Medium-Sized Basin

    No full text
    The hydrological response of a medium-sized watershed with both rural and urban characteristics was investigated through event-based modeling. Different meteorological event conditions were examined, such as events of high precipitation intensity, double hydrological peak, and mainly normal to wet antecedent moisture conditions. Analysis of the hydrometric features of the precipitation events was conducted by comparing the different rainfall time intervals, the total volume of water, and the precedent soil moisture. Parameter model calibration and validation were performed for rainfall events under similar conditions, examined in pairs, in order to verify two hydrological models, the lumped HEC-HMS (Hydrologic Engineering Center’s Hydrologic Modeling System model) and the semi-distributed HBV-light (a recent version of Hydrologiska Byråns Vattenbalansavdelning model), at the exit of six individual gauged sub-basins. Model verification was achieved by using the Nash–Sutcliffe efficiency and volume error index. Different time of concentration (Tc) formulas are better applied to the sub-watersheds with respect to the dominant land uses, classifying the Tc among the most sensitive parameters that influence the time of appearance and the magnitude of the peak modeled flow through the HEC-HMS model. The maximum water content of the soil box (FC) affects most the peak flow via the HBV-light model, whereas the MAXBAS parameter has the greatest effect on the displayed time of peak discharge. The modeling results show that the HBV-light performed better in the events that had less precipitation volume compared to their pairs. The event with the higher total precipitated water produced better results with the HEC-HMS model, whereas the rest of the two high precipitation events performed satisfactorily with both models. April to July is a flood hazard period that will be worsened with the effect of climate change. The suggested calibrated parameters for severe precipitation events can be used for the prediction of future events with similar features. The above results can be used in the water resources management of the basin

    Introducing the Ensemble-Based Dual Entropy and Multiobjective Optimization for Hydrometric Network Design Problems: EnDEMO

    No full text
    Entropy applications in hydrometric network design problems have been extensively studied in the most recent decade. Although many studies have successfully found the optimal networks, there have been assumptions which could not be logically integrated into their methodology. One of the major assumptions is the uncertainty that can arise from data processing, such as time series simulation for the potential stations, and the necessary data quantization in entropy calculations. This paper introduces a methodology called ensemble-based dual entropy and multiobjective optimization (EnDEMO), which considers uncertainty from the ensemble generation of the input data. The suggested methodology was applied to design hydrometric networks in the Nelson-Churchill River Basin in central Canada. First, the current network was evaluated by transinformation analysis. Then, the optimal networks were explored using the traditional deterministic network design method and the newly proposed ensemble-based method. Result comparison showed that the most frequently selected stations by EnDEMO were fewer and appeared more reliable for practical use. The maps of station selection frequency from both DEMO and EnDEMO allowed us to identify preferential locations for additional stations; however, EnDEMO provided a more robust outcome than the traditional approach

    Identification of combined hydrological models and numerical weather predictions for enhanced flood forecasting in a semiurban watershed

    No full text
    Summarization: Flood forecasting in urban and semiurban catchments is often limited by the capability of the combined hydrological models and forecast inputs to predict floods accurately. The objective of this research is to develop an approach (1) to identify the best model forecast from multiple integrations of various hydrological models and numerical weather predictions (NWP), and (2) to find the best forecast combination method for an improved short-range flood forecasting. Seven selected hydrological models were coupled, each with two high-resolution NWP forecasts to provide several alternatives of deterministic hydrological forecasts at a catchment outlet. As such, the different model-input combinations were used to generate 14 hydrological forecasts. Hydrological forecast verification was then carried out over a one-year hindcast period. A comparison between six forecast combination methods, including a benchmark Bayesian model averaging (BMA) method, was also performed for the multiple available short-term streamflow forecasts. Results indicate that the coupling of the Sacramento soil moisture accounting (SACSMA) model with both High-Resolution Deterministic Precipitation System and High-Resolution Rapid Refresh inputs outperformed other model-input integrations. Maximum forecast errors in all model-input integration outputs occurred at forecast lead times of 12–14  h, corresponding to the time of concentration of the catchment. Providing constraints on the estimation of model weights was found to be a significant factor for obtaining an improved combined streamflow forecast. In general, the regression-based forecast combination method of the constrained ordinary least squares (CLS) has emerged as a possible alternative to the widely used BMA method for hydrology application.Presented on: Journal of Hydrologic Engineerin

    Identification of hydrological models for enhanced ensemble reservoir inflow forecasting in a large complex prairie watershed

    No full text
    Summarization: Accurate and reliable flow forecasting in complex Canadian prairie watersheds has been one of the major challenges faced by hydrologists. In an attempt to improve the accuracy and reliability of a reservoir inflow forecast, this study investigates structurally different hydrological models along with ensemble precipitation forecasts to identify the most skillful and reliable model. The key goal is to assess whether short- and medium-range ensemble flood forecasting in large complex basins can be accurately achieved by simple conceptual lumped models (e.g., SACSMA with SNOW17 and MACHBV with SNOW17) or it requires a medium level distributed model (e.g., WATFLOOD) or an advanced macroscale land-surface based model (VIC coupled with routing module (RVIC)). Eleven (11)-member precipitation forecasts from second-generation Global Ensemble Forecast System reforecast (GEFSv2) were used as inputs. Each of the ensemble members was bias-corrected by Empirical Quantile Mapping method using the Canadian Precipitation Analysis (CaPA) as a training/verification dataset. Forecast evaluation is performed for 1-day up to 8-days forecast lead times in a 6-month hindcast period. Results indicate that bias-correcting precipitation forecasts using verifying datasets (such as CaPA) for a training period of at least two years before the forecast time, produces skillful ensemble hydrological forecasts. A comparison of models in forecast mode shows that the two lumped models (SACSMA and MACHBV) can provide better overall forecast performance than the benchmark WATFLOOD and the macroscale Variable Infiltration Capacity (VIC) model. However, for shorter lead-times, particularly up to day 3, the benchmark distributed model provides competitive reliability, as compared to the lumped models. In general, the SACSMA model provided better forecast quality, reliability and differentiation skill than other considered models at all lead times.Παρουσιάστηκε στο: Water (Switzerland

    Hydrological analysis of extreme rain events in a medium-sized basin

    No full text
    Summarization: The hydrological response of a medium-sized watershed with both rural and urban characteristics was investigated through event-based modeling. Different meteorological event conditions were examined, such as events of high precipitation intensity, double hydrological peak, and mainly normal to wet antecedent moisture conditions. Analysis of the hydrometric features of the precipitation events was conducted by comparing the different rainfall time intervals, the total volume of water, and the precedent soil moisture. Parameter model calibration and validation were performed for rainfall events under similar conditions, examined in pairs, in order to verify two hydrological models, the lumped HEC-HMS (Hydrologic Engineering Center’s Hydrologic Modeling System model) and the semi-distributed HBV-light (a recent version of Hydrologiska Byråns Vattenbalansavdelning model), at the exit of six individual gauged sub-basins. Model verification was achieved by using the Nash–Sutcliffe efficiency and volume error index. Different time of concentration (Tc) formulas are better applied to the sub-watersheds with respect to the dominant land uses, classifying the Tc among the most sensitive parameters that influence the time of appearance and the magnitude of the peak modeled flow through the HEC-HMS model. The maximum water content of the soil box (FC) affects most the peak flow via the HBV-light model, whereas the MAXBAS parameter has the greatest effect on the displayed time of peak discharge. The modeling results show that the HBV-light performed better in the events that had less precipitation volume compared to their pairs. The event with the higher total precipitated water produced better results with the HEC-HMS model, whereas the rest of the two high precipitation events performed satisfactorily with both models. April to July is a flood hazard period that will be worsened with the effect of climate change. The suggested calibrated parameters for severe precipitation events can be used for the prediction of future events with similar features. The above results can be used in the water resources management of the basin.Παρουσιάστηκε στο: Applied Science
    corecore