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Highlights 
 A proposed event-based calibration process integrating multi-site, and single and multi-

objective optimizations was used to select representative SWMM5 model parameter sets in a 

semi-urban watershed. 

 Four calibration approaches (Multi-site simultaneous (MS-S), Multi-site average objective 

function (MS-S), Multi-event multi-site (ME-MS) and a benchmark At-catchment outlet (OU)) 

were compared for their performances at different gauging stations. 

 Using the single objective DDS algorithm in MS-A approach to find the best average 

performance of five gauging stations in the catchment area is found to be more efficient than 

using the multi-objective PA-DDS algorithm in MS-S to find non-dominated Pareto-front of five 

individual performances. 

 The study discovered that combination of efficient optimization tools with a series of calibration 

approaches and steps is important in finding candidate parameters sets and representing 

distributed catchments by event-based hydrological models. 
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Abstract 

The objective of this study is to propose an event-based calibration approach for selecting 

representative semi-distributed hydrologic model parameters and to enhance peak flow prediction at 

multiple sites of a semi-urban catchment. The performance of three multi-site calibration approaches 

(multi-site simultaneous (MS-S), multi-site average objective function (MS-A) and multi-event multi-site 

(ME-MS)) and a benchmark at-catchment outlet (OU) calibration method, are compared in this study. 

Additional insightful contributions include assessing the nature of the spatio-temporal parameter 

variability among calibration events and developing an advanced event-based calibration approach to 

identify skillful model parameter-sets. This study used a SWMM5 hydrologic model in the Humber River 

Watershed located in Southern Ontario, Canada. For MS-S and OU calibration methods, the multi-

objective calibration formulation is solved with the Pareto Archived Dynamically Dimensioned Search 

(PA-DDS) algorithm.  For the MS-A and ME-MS methods, the single objective calibration formulation is 

solved with the Dynamically Dimensioned Search (DDS) algorithm. 

The results indicate that the MS-A calibration approach achieved better performance than other 

considered methods. Comparison between optimized model parameter sets showed that the DDS 

optimization in MS-A approach improved the model performance at multiple sites. The spatial and 

temporal variability analysis indicates a presence of uncertainty on sensitive parameters and most 

importantly on peak flow responses in an event-based calibration process. This finding implied the need 

to evaluate potential model parameters sets with a series of calibration steps as proposed herein. The 

proposed calibration and optimization formulation successfully identified representative model parameter 

set, which is more skillful than what is attainable when using simultaneous multi-site (MS-S), multi-event 

multi-site (MS-ME) or at basin outlet (OU) approach.  
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1. Introduction 

Hydrological prediction in semi-urban watersheds requires a thorough understanding of the 

physical processes and the integrated response to storm events in partly urbanized and rural watersheds. 

In the last couple of decades, there have been research advances in understanding the urban and semi-

urban hydrology with new emerging modelling tools. However, challenges remain due to the complex 

rainfall-runoff responses of combined urban, rural and urbanizing areas. Such mixed responses could 

result in multiple peak flows, which increase prediction uncertainty (Fletcher et al., 2013). Consideration 

of the gradual loss of pervious surfaces in semi-urban areas within hydrological models is non-trivial 

because this transformation could lead to increased peak flows, and reduced flood duration and response 

time (Miller et al., 2014). Impervious surfaces, on the other hand, amplify irregular and periodic flows 

(Ackerman et al., 2005). Although the research interest grows, there are only a few guidelines mentioned 

in calibrating urbanizing catchments. One possible reason is due to the challenges in transferring 

calibrated land cover parameters between catchments (Jacobson, 2011).  

Despite their limitation in setting realistic initial conditions, event-based models are conservative 

in nature in simulating individual flood hydrographs and peak flows and provide better flood prediction 

when compared to continuous hydrological models (Tramblay et al., 2012; WMO, 2011). Several event-

based models have been used for urban and semi-urban catchments. For example, El-Hassan et al., (2013) 

compared the performances of a conceptual HEC-HMS model and physically based distributed Gridded 

Surface Subsurface Hydrologic Analysis (GSSHA) model in simulating flood events of a semi-urban 

watershed and showed that the latter performed better. To identify the dominant peak flow mechanisms, 

Kennedy et al., 2013 used the Kinematic Runoff and Erosion Model (KINEROS2) in a semi-arid urban 

environment, whilst Zhang et al., (2013) applied Dynamic Watershed Simulation Model (DWSM) in 

semi-urban landscape. The effect of urbanization on hydrological responses is well studied by using 

several models, such as Catchment hydrological cycle Assessment Tool (CAT) (Miller et al., 2014), 

Distributed Hydrology–Soil–Vegetation Model (DHSVM) (Cuo et al. , 2008), a coupled Conversion of 
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Land Use and its Effect at Small regional extent (CLUE-E) and Soil and Water Assessment Tool (SWAT) 

(Arnold et al.,1998; Zhou et al., 2013) model. Event-based models were also used to assess their ability to 

reproduce past extreme, catastrophic flood events (Furl et al., 2015; Ogden et al., 2000; Sharif et al., 

2013; Sharif et al., 2010).  

The most widely used model for simulating extreme events in urban and semi-urban areas is the 

Environmental Protection Agency‟s Storm Water Management Model (SWMM) (Huber & Dickinson, 

1988; Rossman, 2010). Gironás et al., (2010) studied the effects of various urban terrain morphologies on 

peak flow simulation by the SWMM model. Sun et al., (2014) compares two levels of SWMM catchment 

discretization (macro and micro-scale) to examine the degree of parameterizations and uncertainties using 

GLUE. Some advances were made on the calibration strategies of the SWMM. Krebs et al., (2013) and 

Zhang et al., (2013) employed Non-dominated Sorted Genetic Algorithm-II (NSGAII) and its revised 

version (ε-NSGAII), respectively, to optimize representative Low Impact Development (LID) scenarios in 

a small urbanized catchment. Herrera et al., (2006) also used NSGA-II with SWMM to analyze the trade-

offs between low, medium, and high flows. Barco et al., (2008) utilized a weighted multi-objective 

function and alternating starting points or constraints to optimize coupled GIS/SWMM4 model for the 

large urban catchment. Zaghloul et al., (2001) used Generalized Regression Neural Network to improve 

PCSWMM98 model simulation with inverse calibration technique, which was applied in an impervious 

test area.  

In the application of event-based hydrological models for peak flow prediction, the question of 

which calibrated model parameter sets should be used, can create a practical dilemma, unlike with 

continuous models. Despite the above efforts in improving the simulation and prediction capabilities of 

event-based models, novel methods are still required to address the uncertainties associated with model 

parameterization and temporal variations of input storm events. Robust calibration and validation 

approaches are requisite to identify optimum model parameters and improve runoff predictions (Krauße et 

al., 2012). Calibration procedures of hydrological models vary by their intended purpose, characteristics 

of the watershed, and the type and complexity of the models. The traditional approach is to calibrate the 
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entire catchment (lumped or distributed) parameters according to model predictive performance at the 

basin outlet assessed via single or multiple objectives. Some authors have proposed advancing the single 

site calibration with a sequential/hierarchical approach (Hay et al., 2006; Ozdemir et al., 2017; Singh & 

Bárdossy, 2015). While the first authors sequentially calibrate a model‟s performance of potential 

evapotranspiration, water balance, and daily runoff , the second authors divided sub-basins into two 

hydrologic response units (HRU) and two further child HRUs based on influential parameters such as 

curve number and hydraulic conductivity. However, the limitation of single site approach in improving 

runoff simulation at interior sites of a distributed catchment has motivated multi-site calibration methods. 

One straightforward and efficient way of calibrating models to a set of distinct events would be 

using all calibration events in a series, yielding a unique parameter set per event, and then select the final 

parameter set as the one that performs best in terms of average performance across all the events (in this 

paper, multi-event multi-site calibration approach). However, this could lead to under- or over-estimation 

of flows for any arbitrary event and marks a high compromise in searching parameters sets that satisfies 

all events at once.  

A fairly reasonable and default multi-site calibration approach to consider internal gauges is by 

using a weighted average of performance metrics across the gauging sites (Asadzadeh et al., 2014; 

Engeland et al., 2006; Haghnegahdar et al., 2014; Khu et al., 2006; Khu et al., 2008; Madsen et al., 2002; 

Shinma & Reis, 2014; Xia et al, 2002; Zhang et al., 2009). These studies applied continuous calibration 

with different types of models.  Haghnegahdar et al., (2014), for example, used this approach to calibrate 

the Canada‟s Modélisation Environmentale-Surface et Hydrologie (MESH) model (Pietroniro et al., 

2007) by aggregating the objective function of multiple sites into a single objective and highlighted that 

the method has lower computational cost than other methods involving multi-objective optimization 

techniques. 

As an alternative to the above approach, some authors proposed multi-site simultaneous 

calibration approach to exclusively implement multi-objective optimization technique and generate a set 
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of non-dominated calibration solutions (Leta et al., 2017; Zhang, et al., 2010). With this approach, 

objective functions at the interior sites are optimized at the same time and the optimization result shows 

the tradeoffs between objective functions. Leta et al., (2017) applied a multi-site simultaneous calibration 

in developing SWAT Model for a heterogeneous catchment. Zhang et al., (2010) compared three 

optimization algorithms for multi-site simultaneous calibration of the SWAT model. The study 

highlighted that a multi-algorithm, genetically adaptive multi-objective method (AMALGAM) 

outperforms commonly used evolutionary multi-objective optimization such as Strength Pareto 

Evolutionary Algorithm 2 (SPEA2) and Non-dominated Sorted Genetic Algorithm II (NSGA-II).  The 

above two studies were applied in continuous calibration approach for SWAT model. Other authors also 

considered multi-site step-wise/cascade (Brocca et al., 2011; Cao et al., 2006; Wang et al., 2012; Wi et 

al., 2015; Xue et al., 2016). Brocca et al., (2011), for example, used a distributed model with a sequential 

(step by step) calibration procedure to investigate its importance in flood forecasting and argued that the 

model improved peak flow estimation at internal sites. 

To overcome the challenge of high computational cost in iterating through each sub-basin of a 

distributed catchment in multi-objective global search, the adaptation of tools with parsimonious 

characteristics is non-trivial. Asadzadeh & Tolson, (2009) developed a promising optimization tool, 

Pareto Archived Dynamically Dimensioned Search (PA-DDS), which is the multi-objective version of 

Dynamically Dimensioned Search (DDS) (Tolson & Shoemaker, 2007). PA-DDS has been compared 

with benchmark algorithms of NSGA-II and AMALGAM  (Asadzadeh & Tolson, 2009), ε-NSGAII and 

AMALGAM (Asadzadeh & Tolson, 2013), and NSGAII and SPEA2 (Asadzadeh & Tolson, 2012) and 

the authors concluded that PA-DDS showed improved performances with limited computational cost 

compared to alternative algorithms. 

Behavioral parameter sets of distributed models should be identified with an efficient 

optimization algorithm to help overcome problems of uncertainty and over-parameterization.  For 

example, parameters derived from the calibration process do not always give improved performances in a 

validation period (Beven, 1989; Beven & Freer, 2001; Brocca et al., 2011; Madsen, 2003). Mediero et al., 
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(2011) claim that the presence of multiple acceptable parameter sets not only avoid “equifinality”, but 

also leads to an ensemble of flood event simulations, which provide probabilities. During the calibration 

process, they identified the Pareto solutions and fitted a distribution function to estimate bias and 

confidence intervals of ensembles in the validation period.  

One way of solving the problem associated with distributed catchment parameters is through the 

use of spatial regularization as demonstrated by Pokhrel & Gupta, (2010). The authors used a non-linear 

transformation to reduce the number of parameters from Ng * Np (number of grid cells * number of 

parameters) to 3*Np by applying an adjustable multiplier, power term and additive constant to each prior 

estimated parameter value. 

The above literature reviews indicate that the majority of multi-objective optimizations were 

conducted either for continuous distributed and lumped models or for application other than flood 

prediction in semi-urban watersheds. The objective of this study is to develop and test different event-

based calibration approaches for enhanced flood prediction in semi-urban distributed catchments. A 

second objective is to analyze the spatio-temporal parameter variability of calibrated parameter sets to 

address the uncertainty in event-based parametrizations.  The recent version of Storm Water Management 

Model (SMWM5) with DDS and PA-DDS optimization algorithms are used as calibration tools in this 

study. Section 2 describes the study area and data. Section 3 outlines the methodology including details of 

the model and optimization formulations, whereas the results and discussion are provided in Section 4. 

Finally, conclusion is presented in Section 5. 

2. Study area and data 

The research is conducted in the Humber River Watershed (Figure 1), which is located in 

Southern Ontario, Canada. The catchment area covers 911 km
2
, and the main Humber River drains to 

Lake Ontario. The distributed catchment is configured by dividing the basin into 714 sub-catchments with 

areas spanning between 4.3 ha (0.043 km
2
) and 860 ha (8.6 km

2
). Humber River watershed is 

characterized as a semi-urban area with 54% rural, 33% urban and 13% urbanizing land covers and is 
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administered by Toronto and Region Conservation Authority (TRCA, 2013). The hydrology and drainage 

patterns of the watershed are affected by its distinct topographic regions, which contain four hydrologic 

soil types (A, AB, B, BC, C, and D) (TRCA, 2008). The dual hydrologic soil groups AB and BC denote 

Sandy loam and Silt Loam soil types respectively (NVCA, 2006). 

Gauge rainfall and discharge measurements were collected from Environment Canada and 

Toronto and Region Conservation Authority. The temporal resolution of received data ranges from 5 to 

30 minutes for rainfall data and 15 minutes to 1 hour for discharge records depending on the availability. 

Ground-based rainfall data were used instead of gridded satellite or radar data because of unavailability of 

sub-hourly high-resolution temporal precipitation data in the study area. Niemi et al., (2017) also claimed 

that on-site gauge rainfall data showed better runoff simulation performance than radar-based data in 

urbanizing catchments. In the Humber River Watershed (Figure 1), eleven rain gauges spatially 

distributed across the basin and five river flow gauging stations along the main tributaries including one 

near the outlet have been used for this study. To separate the base flow from direct runoff, a simple 

straight line hydrograph separation method is used (Ajmal et al., 2016; Deshmukh et al., 2013). 

Significant rainfall events in spring periods are screened and selected based on criteria of (1) total 

rainfall amount larger than 20 mm (TRCA & AMEC, 2012), (2) spatial coverage and distribution in the 

watershed (rainfall amounts measured at most of the rain gauges in the watersheds), and (3) their 

consistency with the associated discharge measurement. As such, ten calibration events and four 

validation events were captured in the period spanning between 2007 and 2014 (Table 2). 
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Figure 1: Location of the study area in Humber River Watershed, Southern Ontario. 

Table 1: Description of SMWM5 model parameters 

Parameter Codes Description Initial range of parameters** 

IM* Imperviousness [%] 0-99 

W* Characteristics Width of Overland flow [m] 163-124000 

SP* Depression storage in Pervious areas [mm] 1-600 

CN* Curve Number [-] 1-99 

SL* Catchment slope [%] 0.3-4.5 

NI Manning's n for overland flow in 
Impervious areas [-] 

0.008-0.025 

DT* Drying time [days] 4-12 

SM* Depression storage in Impervious areas 
[mm] 

0.2-5 

NP Manning's n for overland flow in Pervious 
areas [-] 

0.08-0.4 

*parameters used in calibration process 
** The initial values of SWMM parameters were collected from the Toronto Region Conservation Authority (TRCA & AMEC, 
2012) 
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3. Methods 

3.1. Model setup 

The Storm Water Management Model (SWMM) is a well-established event-based and continuous 

semi-distributed model used to simulate extreme events and peak flows in urban and semi-urban 

watersheds (Huber & Dickinson, 1988; Rossman, 2010). Due to the semi-urban characteristics of the 

study area and SWMM‟s wide application in operational flood forecasting (Randall et al., 2014; Robert et 

al., 2008), the recent version of SWMM (SWMM5) engine within PCSWMM platform is used in this 

study. Curve number method and dynamic wave routing method have been used as an infiltration model 

and routing method respectively. 

A sub-catchment in SWMM5 is represented by a non-linear reservoir model, where the 

conservation of mass is applied to generate overland flow (Rossman & Huber., 2015). By combining 

Conservation of Mass and Manning‟s equation, SWMM5 solves first the depth of a pond in sub-

catchment (d) and then runoff at each time step using the following equations. More detailed information 

can be obtained from Rossman & Huber., (2015). 

 
  

  
        (    )

  ⁄  (1) 

Where,    
    ⁄

   
 , in which each sub-catchments area (A) can be partitioned into pervious and 

impervious areas using the „Percent Imperviousness‟ parameter. And the roughness (n) will be defined for 

each partition using the „pervious manning‟s n‟ and „impervious manning‟s n‟ parameters. 

  = rate of rainfall + snowmelt (m/s) 

  = surface evaporation rate (m/s) 

  = infiltration rate (m/s) 

  = ponded depth (m) 

  = depression storage depth (m) 

  = sub-catchment width (m) 
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  = sub-catchment slope (-) 

Once d (ponded depth) is solved using equation 1 at each time step, the volumetric flow rate (Q in m
3
/s) 

can be estimated by: 

   
        ⁄

  
(    )

  ⁄  

 

(2) 

Using the Curve Number method (in the current research) as an infiltration method and assuming the 

cumulative precipitation and infiltration at the start of the time step as P1 and F1 respectively, the 

infiltration rate (in m/s) is solved as follows (Rossman & Huber., 2015). 

   (     )   ⁄  (3) 

Where,       
  

 

       
 

And,      
     

  
 254 , where CN is the curve number and, Smax is the maximum soil moisture 

storage capacity (in mm). 

Finally, the drying time (DT in days) is used to calculate a recovery constant (hr
-1

), that is used to model 

the depletion and replenishment of the soil moisture storage capacity in wet periods and dry period, 

respectively (Rossman & Huber., 2015). 

SWMM5 consists of several physical and hydrological parameters to generate flow hydrograph, 

out of which nine catchment parameters (Table 1) are investigated to check their sensitivity against peak 

flow. 714 sub-catchments of Humber River watershed are assigned with unique parameter values. In 

Table 1, column three indicates the range of initial parameter values for 714 sub-catchments that are 

collected from previous studies and guidelines (CIVICA & TRCA, 2015; James, 2005). Event-by-event 

calibration and model testing are performed with simulation time steps of 15 or 30 minutes depending on 

input data time resolution. For defining the initial wetness of the watershed, the model was run for 1 to 2 

weeks before each storm events as a „warm up‟ period. 
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The methodology proposed in this study is summarized by a flowchart shown in Figure 2, which 

breaks down the calibration procedure into a series of phases. Phase 1 is the model setup and 

calibration/validation data selection phase, which is described above. Phase 2 is the sensitivity analysis 

phase, the purpose of which is to find most sensitive model parameters in semi-urban watersheds such as 

Humber River Basin. Phase 3 is the spatial and temporal parameter variability assessment that aims to 

analyze the uncertainty associated with event-based calibration and variability of candidate parameter 

sets. In Phase 4, two calibrations steps are introduced. The first one compares four different types of 

calibration approaches and proposes ten individual candidate parameter sets obtained from the best 

optimization approach. The second step tests the candidate parameter sets to all calibration events and 

selects a certain number of parameters sets that have higher scores over the entire events and gauging 

sites. Phase 5 evaluates the candidate parameter set(s) in different events to refine the calibration output 

and select the best representative parameter set. The details and methodology associated with each of 

these phases are described sequentially in the following Sections (Section 3.2 to 3.5).    

Table 2: Events selected for calibration and model testing 

N
o. 

Calibratio
n Events 

Amount 
of  

rainfall 
(mm) 

Avg. 
Discharge* 

(mm) 

Avg. 
Discharge* 

(m3/s) 

N
o
. 

Validatio
n Events 

Amount 
of  

rainfall 
(mm 

Avg. 
Discharge* 

(mm) 

Avg. 
Discharge

* (m3/s) 

1 19-Aug-05 53.3 30.4 282.4 1 15-May-

07 

47.1 8.7 81.0 

2 10-Jul-06 66.7 8.7 81.0 2 20-Oct-

11 

75.6 9.8 90.6 

3 28-May-

13 

64.5 10.8 100.0 3 5-Sep-14 84.1 8.3 76.8 

4 8-Jul-13 81.9 29.0 269.0 4 29-Nov-

11 

75.2 15.9 147.2 

5 31-Jul-13 74.5 5.1 47.0      

6 27-Jul-14 29.8 7.3 67.3      

7 20-Aug-09 19.9 6.8 62.7      

8 28-Sep-10 41.4 5.4 50.3      

9 13-May-

11 

64.2 9.7 90.1      

10 7-May-10 37.6 9.0 83.1      
* 

Average discharge measured at the outlet (HC003). 
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Figure 2: Flowchart of proposed approach for selecting representative parameter set in event-based models  

Semi-distributed model setup, 
discretization and event selection 
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Two step calibration 
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Spatial and Temporal 

Parameter variability 

Calibration Step 1  
Selection of best calibration 
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MS-ME and OU)  

Calibration Step 2  Selection of best Model Parameters 
Sets 

*𝑀𝑜𝑑𝑒𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑆𝑒𝑡𝑠 1, 2 & 3+ 

Proposed Model parameter sets 

Validation and Calibration 

Refinement with new events 

Representative Model 
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*𝑀𝑜𝑑𝑒𝑙 𝑃𝑎𝑟𝑎𝑚𝑒𝑡𝑒𝑟 𝑆𝑒𝑡𝑠 1,2, … ,10+ 
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 Calibration Method  

Phase 1 

Phase 2 

Phase 3 

Phase 4 

Phase 5 
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3.2. Sensitivity analysis 

The sensitivity of different versions of SWMM model parameters has been tested in different 

rural and urban watersheds (Barco et al., 2008; Irvine, et al., 1993). In this research, the purpose of 

sensitivity analysis of SWMM5 model is to identify the most sensitive parameters for the study basin. It 

was conducted by using two methods: Regionalized Sensitivity Analysis (RSA) (Spear & Hornberger, 

1980) and Cumulative Sum of the Normalized Reordered Output (CUSUNORO) (Plischke, 2012). 

Regionalized Sensitivity Analysis (RSA): Also called Generalized Sensitivity analysis or Hornberger-

Spear-Young-method (Spear & Hornberger, 1980), RSA is used to identify the most sensitive parameters 

by distinguishing behavioral and non-behavioral parameter sets for Nash-Sutcliffe Efficiency (NSE), Peak 

flow Error (PE) and Volume Error (VE) model performances. 3500 parameter sets were generated by 

using Pareto Archived Dynamically Dimensioned Search (PA-DDS) (Asadzadeh & Tolson, 2013) 

optimization algorithm. The sensitivity was measured by Kolmogorov–Smirnov test statistics, which 

evaluates the maximum vertical distance between the curves of the cumulative distribution function of 

behavioral   ( ) and non-behavioral    ( ) parameter sets as defined by: 

 
  ,      

 
|  ( )     ( )| (4) 

Where,   ,   is the maximum vertical distance and sup is the supremum function.   ,   (hereafter called 

RSA index) value ranges between 0 and 1 representing the limit between the most insensitive and 

sensitive parameters, respectively. Most sensitive parameters would have higher maximum vertical 

distance between the curves of   ( ) and    ( ). 

Cumulative Sum of the Normalized Reordered Output (CUSUNORO): Initially proposed by 

Plischke, 2012, CUSUNORO is a graphical post-processing method to represent the first-order sensitivity 

index. Its principle is withdrawn from the ideas of Contribution to the Sample Mean (CSM) plot (Bolado-

Lavin et al., 2009). CSM and CUSUNORO are found to be suitable for estimating the main effect, the 

first-order variance based sensitivity index for cases where there is no direct access to the sampling 

procedure and the simulation model to map input-output relationship (Plischke, 2012). 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Manuscript 
 

16 
 

Let   denote an arrangement of ordered values of input parameters sorted in ascending order, i.e, 

  ( )  {  , ,   , , … ,   , }; hence its corresponding sorted series of outputs   ( ) can be created for all  . 

A scaling factor, which resembles the output variance is then created using the square root of the sum of 

squares     ∑ ( ( )   ̅) 
    (Plischke, 2012). Finally, the cumulative sum of normalized reordered 

output is defined as: 

  ( )  
1

√     
∑(   ( )   ̅)

 

   

 (5) 

The CUSUNORO values,  ( ), can then be plotted against the empirical cumulative distribution of input 

parameters    to visualize the sensitivity of individual parameters on the output statistics.     

SWMM5 model parameters (Table 1) are considered as inputs and different performances metrics were 

used as outputs. Input-output mapping is performed externally by using Pareto Archived Dynamically 

Dimensioned Search (PA-DDS) (Asadzadeh & Tolson, 2013).  
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3.3. Spatial and temporal parameter variability 

The primary objective of this section is to address the variability in event-based parametrizations 

in a semi-urban watershed and how it can be quantified by different calibration approaches.  Before 

starting applying alternative and new methods of calibration formulations and optimization algorithms, 

we perform this exercise using a benchmark calibration approach at the catchment outlet involving 

limited manual and multi-objective calibration. The calibration process is described in detail together with 

the other proposed approaches in Section 3.4.1. The outcome assists to formulate and compare alternative 

event-based calibration approaches in reducing the uncertainties. Different parameterizations of the 

SWMM5 model represent several realizations of the physical process in the event of extreme spring 

rainfalls. Ten individual event-based calibrations result with ten SWMM5 model parameter sets. The 

variability of these sets regarding the model output as well as differences of calibrated sensitive 

parameters among the events was assessed. 

First, the spread of two sensitive model parameters (Imperviousness and Drying Time) in each 

model parameter sets were assessed by developing box plots for different percentile values. Parameter 

values, collected from 714 sub-catchments, were ranked in ascending order and their percentiles were 

extracted accordingly. The variability of calibrated parameters in space can be observed by the degree of 

the spread. 

Second, the uncertainty of event-based parametrization in a distributed catchment was evaluated 

by analyzing the peak flow response. We re-run the ten model sets for ten calibration events by regarding 

each model sets as an individual model and the peak flow simulation results were extracted. The specific 

objective of this method is to check how variable simulated peak flows are within each model sets as well 

as with the observation at multiple interior sites. Various boxplots were used to display standardized peak 

flow variability. The Standardized peak flow is calculated by normalizing the deviation of the simulated 

peak flows from observed peak flow by their standard deviation.  
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3.4. Model Calibration 

3.4.1. Event-based Calibration approaches 

Three multi-site event-based calibration approaches are compared with a benchmark „At-

catchment outlet‟ method to select potential parameters sets in Humber River basin.  The calibration 

parameters in each of these four approaches are the same and are determined from the sensitivity analysis 

described above. 

i) At Catchment Outlet (OU) 

The conventional calibration approach of many hydrological models is to calibrate the entire 

catchment using a gauging station located at the basin outlet. In this approach, calibration to each of the 

ten events is completed independently.  This calibration method is used as a benchmark to compare its 

results with other considered calibration approaches. Limited manual calibration is performed before 

using the following optimization formulation in order to get initialized solutions. 

Single and multi-objective optimization techniques could be used to calibrate distributed models 

at basin outlets. Here, in order to find the best achievable parameter sets, multi-objective optimization 

with three different performance metrics (Nash-Sutcliffe Efficiency (NSE) (Nash & Sutcliffe, 1970), Peak 

flow Error (PE) (Liong et al., 1995), and Volume Error (VE) (Niemi et al., 2017) are used to calibrate 

Humber River Watershed at HC003 gauging station. This formulation is similar to the one used by Barco 

et al., 2008, where they minimized a weighted objective function summing the total flow volume, peak 

flow rate and instantaneous flow rate errors (each as percentage). The basic difference is that Barco et al., 

2008 minimize/maximize a single weighted objective function by changing the weights depending on 

target flow type (e.g. peak flow or volume) whereas the approach here gives equal weight to individual 

objective functions and used a multi-objective PA-DDS algorithm to identify non-dominated solutions. 

The exercise is repeated ten times for ten calibration events with maximum iteration of 500 set for each 

optimization. 
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The multi-objective target is to maximize NSE and minimize PE and VE at station this station (a). 

i.e     

         *       ,         ,        + (6) 

In which: 

 

 

    1  
∑(  ,    , )

 

∑(  ,    
̅̅̅̅ )

  

 

   
|     |

  
 

 

   
|  ,    , |

  , 
 

(7) 

Where,    ,  &   ,  are observed and simulate discharge at each time step, in cubic meter per second and 

  
̅̅̅̅  is the average observed discharge;   ,  &   ,  are observed and simulated peak flows respectively; 

and     &    are the volume of water under observed and simulated flow hydrographs respectively, in 

million cubic meter. NSE value ranges between –∞ and 1 with 1 indicating best performance. PE, and VE 

have values spanning between 0 and ∞ and better performing model sets would have values close to 0. 

The result of the OU calibration approach is ten parameter sets (for ten calibration events), with each set 

being made up of the average of non-dominated solutions corresponding to a specific flow event. 

ii) Multi-Site Simultaneous multi-objective (MS-S) 

Multi-objective optimization techniques have been frequently used to calibrate distributed 

models. A multi-objective optimization algorithm is used to find a feasible set of Pareto-optimal 

parameter solutions by minimizing or maximizing the objective function vector. i.e.             ( )  

,  ( ),   ( ),   ( ), … ,   ( )- where the objective function vector  ( ) is comprised of   objective 

functions or performance metrics  (Zhang et al., 2010). 

Multi-site simultaneous multi-objective optimization was previously considered for continuous 

calibration (Leta et al., 2017; Zhang et al., 2010). In the current study, it is applied for an event-based 
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calibration process. In this calibration approach, optimization is performed independently for ten 

individual calibration events. For each event,  the model‟s performance is assessed simultaneously across 

multiple gauging stations using Nash-Sutcliffe Efficiency (Nash & Sutcliffe, 1970) performance metrics.  

In other words, the performance at each site in the study area is assessed by a different objective function 

so that performances at multiple locations are accounted for simultaneously. That is, for the five gauging 

stations in Humber River Watershed (represented by a, b, c, d, and e):  

         *       ,          ,                           + (8) 

 

For optimization, Pareto Archived Dynamically Dimensioned Search (PA-DDS) (Asadzadeh & Tolson, 

2013) algorithm is applied to find the Pareto-optimal parameters sets. PA-DDS was used within 

OSTRICH (Matott, 2005) framework toolkit. The selection operation in PA-DDS of non-dominated 

solutions (Pareto-optimal solution) is performed using estimated Hypervolume Contribution (HVC) 

(Asadzadeh & Tolson, 2013). The maximum number of iteration is set as 500 and the perturbation 

parameter is left as the default value of 0.2. Since there are 10 calibration events, 10 PADDS optimization 

is performed to evaluate the objective function values of each solution.   

The result of the MS-S calibration approach is multiple parameter sets or non-dominated 

solutions corresponding to a specific flow event. Then, equal weight is given to each objective functions 

(  ,   ,   ,   &                3) to find the average of the non-dominated parameter sets and solution 

for each calibration event. 

iii) Multi-Site Average objective function (MS-A) 

This calibration method is frequently used by several researchers to account for the interior sites 

of a semi- or fully distributed catchment in the calibration process by taking the weighted average of 

multiple objective functions. The objective functions at multiple gauging stations are aggregated into a 

single objective function. Then optimization is performed to maximize the aggregated single objective 

function.    
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The five sites of Humber River Watershed are evaluated by their respective Nash-Sutcliffe Efficiency 

index: 

 

    (                        ) 5⁄  
 

        *   + 
(9) 

The single-objective function (       ) is optimized by using Dynamically Dimensioned Search (DDS) 

(Tolson & Shoemaker, 2007) optimization algorithm within OSTRICH framework (Matott, 2005). 

Similar to the MS-S approach, the MS-A DDS optimization is performed independently for 10 individual 

calibration events and the result is 10 candidate parameter sets. In addition, the maximum number of 

iteration of 500 and perturbation value of 0.2 was set. 

With perfect algorithms that converge to true optimal solution/true set of non-dominated 

solutions, MS-A would yield one of the non-dominated solutions generated by solution of MS-S 

formulation. In all practical calibration situations, convergence to true optimal/Pareto-optimal set of 

solutions is not guaranteed and thus all results are approximate. The quality of the approximations to the 

true, but unknown solutions is dependent on the algorithm quality (DDS and PADDS) and is also 

dependent on the algorithm computational budget. PADDS and DDS computational budgets in terms of 

number of solutions evaluated in MS-A and MS-S are equivalent and set to 500 and replicated 10 times 

for 10 calibration events. 

The main difference between the MS-A and the MS-S approach is on the optimization method. 

While MS-A is based on a single objective optimization scheme (see Equation 7, p.18), the MS-S 

approach employs multi-objective optimization function (see Equation 6, p.17). In the former MS-A 

approach, although it involves aggregating several objectives, it is based on a single objective calibration 

process with the help of Dynamically Dimensioned Search (DDS) method: i.e. the objective is to 

maximize a single NSE value which is the average NSE of all sites (including at the outlet). Conversely, 

MS-S approach aims to find a feasible Pareto front by maximizing the objective function vector (rather 

than a single value): in which the vector comprises of NSEs at multiple sites including the outlet. In MS-S 

approach, the non-dominated (Pareto-optimal) solutions are generated by finding a tradeoff between 
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individual objective functions using Pareto Archived Dynamically Dimensioned Search (PA-DDS) 

algorithm. At each iteration, MS-S searches for a tradeoff of optimum parameters that simultaneously 

satisfies individual objective functions or simultaneously maximizes the performances of each NSEs 

(interior as well as outlet), whereas MS-A searches the best parameters of the whole 714 sub catchments 

that maximize a single NSE value (average of NSEs). 

iv) Multi-event multi-site calibration (ME-MS) 

This approach involves concatenating the simulated and observed discharge of separate events and 

treating it as a single time series. For the combined multi-event series, the performance metrics (NSE) are 

then computed at each gauging stations. The multi-site objective function is basically defined in a similar 

manner as the previous calibration approach (MS-A) (equation 7) and thus is also formulated as a single-

objective optimization problem. One of the differences between ME-MS and the above two (MS-S and 

MS-A) approaches is that ME-MS is applied over all ten events, whereas the others performed event by 

event. The optimization was performed by DDS algorithm with maximum iteration of 500. The 

calibration result is one set of candidate parameter sets that are somehow appropriate for all ten flow 

events. 

3.4.2. Calibration steps 

In order to identify the best parameters sets across the calibration events, the results of the above four 

calibration approaches described in section 3.4.1 are processed and compared in the following two 

calibration steps. 

Step 1:- Select best set of candidate solutions, (e.g. select best calibration approach): 

Each calibration approach generates a set of candidate parameter sets. The calibration approach with 

better performance and score at each calibration event and gauging station is selected for the next step. 

This step comprises of a couple of processes. Initially, we calibrate the model to ten individual events 

(Table 2) using MS-S, MS-A and OU approaches. At the end of each optimization or calibration 

approaches ten candidate parameters sets are foreseen for ten flow events. The performance of the final 
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calibrated sets of parameters would be different for different optimization formulation. Therefore in the 

next process we compared the result of these calibration approaches at each individual event. Here, since 

ME-MS approach is formulated by aggregating over ten calibration events, it results with one set of 

calibrated parameters for all events as opposed to the output of MS-S, MS-A and OU approaches, which 

have ten sets of calibrated parameters. For comparison purpose, we re-apply the final calibrated parameter 

sets of ME-MS to ten events so that the results of four calibration approaches could be compared at 

individual events. In addition, comparison is also made at individual gauging stations (five sites). Finally, 

the best calibration approach that performed well at ten calibration events and five sites is proposed to the 

next calibration step. The final outcome of this step is ten calibrated parameter sets from one of the 

calibration approaches.  

Comparison of calibration approaches is performed using model improvement scale or Prediction 

Error Decrease (PED) in percentage (Coulibaly, 2003) and Taylor Diagram (Taylor, 2001). The PED 

shows the model performance improvement of Multi-site simultaneous (MS-S) and Multi-site Average 

objective function (MS-A) and Multi-event multi-site (ME-MS) calibration approaches when compared to 

the benchmark At-Catchment Outlet (OU) approach at five gauging stations. Taylor diagram is used to 

precisely quantify and display the pattern similarity and statistics of different calibrated model parameter 

sets and the observation at multiple gauging sites. A revised normalized Taylor Diagram is constructed 

based on Kärnä & Baptista, 2016 by relating normalized centered root-mean-squared error with ratio of 

standard deviation of observed and simulated discharge and correlation coefficient through a Law of 

Cosines. The attributes of Taylor Diagram will be able to show the statistical proximity of individual 

model sets derived from two calibration approaches with the observation at five gauging stations. Details 

regarding Taylor Diagram can be found in Taylor, 2001. 

Step 2:- From best approach candidate parameter sets, filter out poor candidates (e.g. select top three): 

From the first step, ten candidate parameter sets are produced by the best calibration approach. But the 

performance of each candidate parameter sets in a different calibration event is not yet evaluated. In this 
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step, we re-apply each candidate parameter set to all events and aggregate performance across the events 

and sites to score parameter sets. Then the most representative parameter sets are chosen based on the 

highest score. Normalized NSE is used to score the performance across the events and sites. Here the 

performance criterion (NSE) is normalized by using the maximum and minimum values of the candidate 

model parameters sets at each site and event. Then the sum of the normalized NSE over the entire 

calibration events is estimated for each candidate model parameters sets. The top three potential model 

parameters sets with the highest total normalized NSE is registered and proposed for model testing and 

calibration refinement. 

3.5. Validation 

Validation was performed to test and refine top three model parameter sets selected during 

calibration process using a data set independent of calibration period. We have selected four validation 

events (Table 2) that qualify the event selection criteria described Section 2. This phase is dedicated to 

select the most representative model parameter sets. The model testing and refinement is performed in 

four new events (Table 2). The three model sets are evaluated by using Taylor Skill Score (Taylor, 2001) 

to further corroborate the outcome of the previous two step calibration processes. This score summarizes 

a Taylor diagram and defines a single skill score that measures the correlation coefficient and centered 

root-mean-squared error along with standard deviation (Taylor, 2001). It is defined as: 

 

 
  

4(1   )

(
  

  
 

 
  

  
⁄

)
 

(1    )

 
(10) 

Where: S indicates the Taylor Skill Score;    is model variance;    is observed variance; R is model 

correlation coefficient, and    is maximum correlation attainable, here taken as the maximum of model‟s 

correlation coefficient. The skill increases (approaches one) as    and   get closer to    and    

respectively.
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4. Results and discussion 

4.1. Sensitivity analysis 

The sensitivity analysis (Figure 3) indicates that Imperviousness (IM) is the most sensitive 

SWMM5 parameter to NSE, PE, and VE model performances in Humber River watershed. The RSA 

indexes show that after Imperviousness and Drying time (DT), Depression storage in Impervious areas 

(SM) and Pervious areas (SP) appear to be slightly sensitive to the model performances, particularly to 

Peak flow Error. This result is analogous to the plots of Cumulative Sum of the Normalized Reordered 

Output (CUSUNORO) (Figure 4). The CUSUNORO plots indicate that Imperviousness (IM) followed by 

Drying time (DT) have the largest first order contribution to NSE, VE, and PE as the departure of their 

cumulative sum of the normalized output from the horizontal line (y=0) is considerable. The different 

direction of CUSUNORO plots for NSE, VE and PE indicates that the contribution of each parameter to 

the mean and variance and the output is positive if above the horizontal and negative if below the 

horizontal. 

The results of both sensitivity analyses are reasonable for semi-urban areas like Humber River 

watershed, which covers about 50% pervious and 50% impervious areas. The rainfall-runoff response is 

governed by the percentage of imperviousness in the sub-catchments upstream of the gauging station and 

recovery time (drying time) of the saturated soil in pervious areas of the sub-catchments. In general, 

Imperviousness and Depression storage are found to be the most sensitive parameters of SWMM model 

to peak flow and volume in urbanizing watersheds, which is also supported by Barco et al., (2008). For 

calibration, the SWMM parameters except Manning‟s n are considered as it has relatively less impact to 

NSE and Peak flow in both Impervious and Pervious areas.  
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Figure 3: Output of Regionalized Sensitivity Analysis. Figure displays the sensitivity index value of nine SWMM5 

parameters for Nash-Sutcliffe Efficiency (NSE), Peak Flow Error (PE) and Volume Error (VE). Higher RSA index 

corresponds to higher sensitivity of parameters to the output performance. Description of parameter letter codes (x-axis) 

is presented in Table 1.  



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

Manuscript 
 

27 
 

  

Figure 4: Cumulative Sum of the Normalized Reordered Output (CUSUNORO) used as first order sensitivity of SWMM5 

parameters to three performance metrics (NSE, PE and VE). The deviation from the mean (CUSUNORO values or z(i) in 

Eqn. 5) is plotted against the empirical cumulative distribution of input parameters (x-axis). Higher deviation from the 

mean indicates higher sensitivity of parameters to corresponding performance metrics. Descriptions of parameter letter 

codes (for each colored lines of the plots) are presented in Table 1.  
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4.2. Spatial and temporal parameter variability 

The study assessed the degree of uncertainty in event-based calibration of SWMM5 distributed 

model parameters sets that were obtained by an event-based calibration processes performed for ten 

calibration events. The parameter variability (uncertainty) was demonstrated by temporal scale (among 

calibration events) and spatial scale (within 714 sub-catchments). In Figure 5, the spatial variability of the 

two most sensitive parameters (Imperviousness and Drying Time) that are generated by ten calibrated 

parameter sets is shown. The medians and the interquartile ranges (IQR) of the box plots in higher 

percentile imperviousness values show variability between individual calibration events. Lower and 

medium percentiles values of imperviousness have relatively similar medians and IQRs among the 

parameter sets. In general, higher uncertainty is observed among the sub-catchments with higher 

imperviousness (>80% Imperviousness). This result can be reasonably expected from a semi-urban 

watershed where high impervious areas highly influence the rainfall-runoff response in the time of 

extreme events. Figure 5 also shows that pervious areas that have relatively faster recovery time to be in a 

drying state when saturated (<20% Drying Time or less than 5.5 days) shows higher variability or 

uncertainty. Rapid recovery time is often recognized in hydrologic soil group D such as medium and 

coarse sandy soils, which pertains to high rate of water transmission or infiltration (Rossman, 2010; 

NRCS, 2007). 

Figure 6 shows the peak flow variability of the ten potential representative SWMM5 model 

parameter sets in different calibration events. The uncertainty is expressed by standardized peak flow 

deviation from the observation recorded at multiple gauging stations. The degree of the deviation is quite 

significant in almost all events and measuring stations. The medians and associated IQRs are either above 

or below the green horizontal line (observation), which depicts underestimation and overestimation of 

peak flows by the potential model parameters sets. Outliers were also observed on many occasions. This 

investigation indicates the existence of high uncertainty in reproducing peak flows by the majority of 

model parameters sets. Within each boxplot, it can be seen that only one point (one model parameter set) 
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matches (or close to matching) with observed peak flow, which is, in fact, the calibrated model parameter 

set for each event that the boxplot is constructed. The results of this variability analysis give an overview 

of the difficulty in selecting representative parameter sets in distributed semi-urban watersheds and the 

need for a robust method of calibration when dealing with event-based model parametrization. 

     

Figure 5: Box plots showing the spread of the lower, middle three and upper percentile values of most sensitive calibrated 

parameters (Imperviousness-Left and Drying Time-Right) to illustrate their variability in ten Model Sets (x-axis). 

Parameter values, collected from 714 sub-catchments, were ranked in ascending order. Model parameter sets represent 

different realization of the PCSWMM model in ten calibration events. 
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Figure 6: Figure showing Peak Flow variability of model parameter sets. 10 plots are constructed for 10 calibration events 

and each boxplots within a plot corresponds to different gauging stations. Individual boxplots are developed from 10 

standardized peak flows, which are generated by ten different Model Parameter Sets in order to demonstrate the 

variability of different realizations of SWMM5 model. Standardized peak flows are calculated by normalizing the 

deviation of the simulated peak flow from observed peak flow by the standard deviation of the simulated peak flow. 

Green horizontal line along the zero y-axis is computed based on observed peak flow.  
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4.3. Calibration Approaches 

The outputs from the four multi-objective calibration approaches presented in section 3.4.1 (MS-

S, MS-A, ME-MS and OU) are evaluated in ten individual calibration events at five gauging stations. 

Their performances are compared at each calibration steps mentioned in section 3.4.2. 

Figure 7 and Figure 8 present the comparison of calibration approaches for the first calibration 

step. The relative improvement of Multi-site average objective function (MS-A) and Multi-site 

simultaneous (MS-S) over the benchmark At-catchment outlet (OU) is quantified by the prediction 

(simulation) error decrease (PED) percentage. The PED (in Figure 7) shows the improvement of NSE of 

both MS-A and MS-S approaches when compared to OU at five gauging stations. Using either of the 

multi-site calibration approaches improves the model performance by about 28% in the interior sites when 

compared to the conventional at catchment outlet calibration method. Comparing the two multi-site 

optimization methods, aggregating the objective functions over the gauging stations (MS-A) gives a fairly 

better performance than calibrating the multiple sites simultaneously (MS-S). With a reference to the 

benchmark OU calibration, the NSE performance metric of MS-A is improved by an average of 43% as 

compared to MS-S where it was improved by only 29%. In fact, only 4 out of 42 calibration events and 

stations show slightly higher NSE performance for MS-S; out of which 3 are at the outlet. At the outlet, 

there are some occasions where the benchmark OU calibration shows improved performance over both 

MS-S and MS-A. This is a reasonable because it is generally easier to improve the performance at one 

location during optimizing. The calibrated parameter sets from Multi-event multi-site (ME-MS) 

calibration approach is re-applied for each calibration event to evaluate and compare its result with the 

other methods. It is found that the performance of ME-MS is significantly lower than both multi-site 

optimizations as well the benchmark calibration approach. Although not shown in Figure 7 due to its high 

percentage difference to present in PED metrics with other calibration approaches, the comparison is 

shown in Figure 8. 
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The performance of the four calibration approaches was tested at six calibration events, and 

statistical comparison is shown by the Taylor Diagram in Figure 8. Confirming the model comparison 

using PED metrics in Figure 7, the MS-S and MS-A calibration approaches have better statistical 

proximity and pattern with the observation than ME-MS and OU methods. The Taylor diagrams indicate 

that MS-A approach has relatively more confined points towards the observation („OBS‟ black dot and 

line) and consistently proves to be a better calibration approach than MS-S and other methods. The multi-

event multi-site (ME-MS) optimization has more sparse points away from the „OBS‟ proximity and 

produces an inconsistent performance over the calibration events. 

In general, the calibrated model parameters sets generated by multi-site average objective 

function (MS-A) approach achieved improved model performance (NSE) and statistical measures 

(standard deviation, root mean squared error and correlation coefficient) during calibration step-1 and 

hence selected for calibration step-2. 

Ten calibrated parameter sets generated by MS-A optimization approach were applied again to 

each of the ten calibration events and the results were extracted. Figure 9 demonstrates the normalized 

NSE performance metrics evaluated at five gauging stations. The summation of the normalized NSE over 

each gauging sites and calibration events indicates that Model parameter Set 5 has the highest 

performance followed by Model Set 2 and 3. The result indicates that it is fairly reasonable to represent 

distributed semi-urban watersheds by qualifying model parameter sets generated from multiple even-

based calibration process. 

With the above results in mind, the DDS algorithm used by MS-A appears to converge to a better 

approximate true solution than the PADDS algorithm employed by MS-S approach. One of the key 

reasons is that MS-S result quality is summarized by precisely the objective function being optimized by 

MS-A.  Another reason is likely that when solving the MS-S formulation, PADDS is spending substantial 

effort to approximate a Pareto-set in five dimensions and as such, PADDS is generating candidate 

solutions from much diversified parts of parameter space.  In contrast, DDS is generating candidate 
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solutions concentrated in the area of parameter space that leads to a good average objective function 

value.  
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Figure 7: Model Improvement (defined by Prediction Error Decrease in percentage (PED *100) ) of Multi-site 

Simultaneous (MS-S) and Multi-site Average objective function (MS-A) calibration approaches when compared with 

Catchment Outlet (OU) approach at five gauging stations and ten calibration events.  
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Event 1 Event 2   

 

 

 

Event 3 Event 4 
 

 

 

 

Event 5 Event 6 
 

 

  

 
Figure 8: Comparison of Taylor diagrams showing an event-by-event statistical evaluation of simulated flows from four 

calibration approaches (MS-S, MS-A, ME-MS, & OU) evaluated at six calibration events. The Taylor Diagrams 

summarized three statistical performances at five gauging stations for each event. Different colors denote respective 

calibration approaches while different shapes correspond to different stations (gauging sites). Perfect models sets would 

align themselves closer to the black arc as well as point ‘OBS’, which depict agreement with observations.  
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Figure 9: Performance ranking of 10 model parameter sets in ten calibration events. Normalized Nash-Sutcliffe Efficiency index (NSE) is used to score the performances 

at each gauging stations with sum over all sites and over all events displayed on the right side. Highest score corresponds to best performing model parameter set and 

vice versa. The heatmap shows the Normalized NSE values according to color palette displayed at the bottom side.
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Figure 10: Model validation of top three model sets of MS-A approach in different events. The Taylor Skill Scores are 

evaluated at each of the five gauging sites for four different events. Most skillful models would have a score of 1 and the 

least ones have a score of 0. 

4.4. Validation 

To verify the outcome of the above calibration processes, the top three model parameter sets 

(Model Set 5, 2 and 3) were evaluated at validation events because their performance from calibration 

step 2 are not significantly different (Summation of Normalized NSE: 30, 32 and 33 in Figure 9). The 

Taylor skill score was used to evaluate these SWMM5 model parameter sets at multiple sites and results 

are presented in 

 

Figure 10. Based on the scores, Model Set 5 appears to be more skillful than Model Set 2 and 3 as 

its score is close to 1 for majority of gauging stations and events. The summation of the Taylor Score over 

the gauges and evens (Sum=16) is the highest. Conversely Model Set 2 and 3 have lower scores because 

Taylor Skill Score penalizes models with little statistical pattern similarity and weak correlation with 

observations. In general, Taylor Skill Score is found to be a precise evaluation tool to select skillful 

SWMM5 model parameter sets that could represent the distributed watershed in space and time.
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5. Conclusion  

A proposed event-based calibration approach integrating multi-site and multi-objective 

optimizations was used to select representative SWMM5 model parameter sets in a distributed semi-urban 

watershed. We compared the performance of four calibration approaches in reproducing the desired 

spring flow responses at interior sites of Humber River Watershed. These are Multi-site simultaneous 

(MS-S), Multi-site average objective function (MS-A), Multi-event multi-site (ME-MS) and a benchmark 

At-catchment outlet (OU) calibration approaches. MS-S and OU approaches utilized PA-DDS 

optimization algorithm, whereas the others applied DDS algorithm.  

A spatio-temporal variability of calibrated model parameter sets among different calibration 

events was initially assessed in anticipation of capturing the uncertainty of event-based parametrization. 

The results indicated that there is considerable uncertainty in calibrating highly impervious sub-

catchments (>80% Imperviousness) and pervious areas with rapid recovery time (< 5.5 days of Drying 

Time). Another remark from the variability analysis is the presence of uncertainty in peak flow response 

by the model parameter sets. The uncertainty in reproducing peak flows by the majority of model 

parameters sets at multiple interior sites is a clear indication of a need for a robust calibration approaches 

in event-based distributed models. 

 The output from the proposed calibration approaches and steps demonstrated that multi-site 

average objective function (MS-A) and multi-site simultaneous (MS-S) calibration approaches showed 

superior performances against the Multi-event multi-site and benchmark calibration approaches. The 

desired flows at interior upstream sites were better reproduced using MS-A and MS-S methods as 

compared to calibrating using the outlet (OU); a finding similar to Leta et al., (2017).  

Most importantly, aggregating the objective functions across the multiple sites into a single 

objective function (MS-A) outperformed the multi-site simultaneous (MS-S) approach. Individually 

calibrated model parameter sets from MS-A calibration approach shows significant improvement of NSE 
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performance metrics when compared to MS-S at the majority of stations. This is also supported by Taylor 

diagrams, which demonstrated that the MS-A approach attained better statistical pattern and amplitude of 

observed hydrographs. Using MS-A method, ten parameter sets extracted from ten individual calibration 

events were cross-tested again at all events in the second calibration step. This step was able to identify 

the top three parameter sets out of ten potential model sets using their aggregated normalized NSE 

estimated at multiple sites. Model parameter sets 5 followed by 2 and 3 appear to outperform the rest of 

the model parameter sets. Validation was made at four different events to test the statistical performances 

using Taylor Skill Scores. And the result indicates that Model Parameter Set 5, which is calibrated using 

MS-A approach, is the most skillful and representative SWMM5 model parameter set in the study area. 

In General, using the single objective DDS algorithm in MS-A approach to find the best average 

NSE of five gauging stations in the catchment area is found to be more efficient than using the multi-

objective PA-DDS algorithm to find non-dominated Pareto-front of five NSE performances. 

The study discovered that combination of efficient optimization tools with a series of calibration 

approaches is important in finding candidate parameters sets and representing distributed catchments by 

event-based hydrological models. The study takes advantage of the DDS and PA-DDS algorithms to 

select non-dominated solutions and representative model parameter sets. Finally, the authors strongly 

believe that the methods and calibration approaches employed in this research can also be applied in other 

watersheds. An interesting result from the study is that averaging/aggregating objective functions during 

calibration provide better simulation output, which can be applied for any cases.  
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