107 research outputs found

    UVODNIK 2015: NAPORI PREMA BOLJOJ KVALITETI ČASOPISA Croatian Journal of Fisheries (Ribarstvo)

    Get PDF
    By changing its editorial system, the Croatian Journal of Fisheries is moving toward more rigorous review which will sub- sequently strengthen its quality and impact. This editorial provides information on the published articles in 2014 as well as a list of reviewers who participated in the review process. Many papers were submitted as short communications to the Threatened Fishes of the World (TFW) series in 2014. To be more useful to the broader scientific community, guidelines about preparation of manuscripts for the TFW series based on The IUCN Red List of Threatened SpeciesTM is provided. Also, after having several years of experience in reviewing, processing and editing of manuscripts, it has been noted that authors repeat the same mistakes. Therefore, we present here a paper that discusses the most common mistakes encountered dur- ing manuscript preparation which can result in its rejection.Promjenom uredničkog sustava i načina rada časopis se kreće u pravcu rigoroznijih recenzija te sukladno, jačanju kvalitete i utjecaja. Ovaj uvodnik daje podatke objavljenih članaka u 2014. godini prema tematskim cjelinama kao i popis recenzenata koji su sudjelovali u recenzijskom postupku. Mnogo kratkih članaka je pristiglo iz tematike ugroženih ribljih vrsta u svijetu u 2014. Stoga su ovdje date detaljne upute za pripremu takvih članaka, baziranih na podacima navedenim u The IUCN Red List of Threatened SpeciesTM , kako bi bili korisniji za širu znanstvenu zajednicu. Također, nakon više godina praćenja pridošlih članaka, autori često i kontinuirano griješe u oblikovanju samog članka. Stoga je dat i prikaz najčešćih pogrešaka kod prijavljenih radova što može rezultirati istovremenim odbijanjem rada kao potencijalnog članka za publiciranje

    Garra roseae, a new species from the Makran region in southern Iran (Teleostei: Cyprinidae)

    Get PDF
    Garra roseae, new species, is described from the stream Tang-e-Sarhe in the Iranian Makran region. It is distinguished from its congeners in the Middle East by lacking barbels, having a small mental disc, 42-58 total scales along the lateral line, 24-30 scales along the predorsal midline, and 20-24 circumpeduncular scales. It is further characterised by having five diagnostic nucleotide substitutions and a minimum K2P distance of 5.39% to G. rossica and 5.49% to G. nudiventris in the mtDNA COI barcode region. Garra phryne from eastern Iran is considered to be a synonym of G. nudiventris.We are pleased to thank the University of Guilan for financial support

    Genetic population structure of sympatric and allopatric populations of Baltic ciscoes (Coregonus albula complex, Teleostei, Coregonidae)

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Teleost fishes of the Coregonidae are good model systems for studying postglacial evolution, adaptive radiation and ecological speciation. Of particular interest is whether the repeated occurrence of sympatric species pairs results from <it>in-situ </it>divergence from a single lineage or from multiple invasions of one or more different lineages. Here, we analysed the genetic structure of Baltic ciscoes (<it>Coregonus albula </it>complex), examining 271 individuals from 8 lakes in northern Germany using 1244 polymorphic AFLP loci. Six lakes had only one population of <it>C. albula </it>while the remaining two lakes had <it>C. albula </it>as well as a sympatric species (<it>C. lucinensis </it>or <it>C. fontanae</it>).</p> <p>Results</p> <p>AFLP demonstrated a significant population structure (Bayesian <it>θ</it><sup>B </sup>= 0.22). Lower differentiation between allopatric (<it>θ</it><sup>B </sup>= 0.028) than sympatric (0.063-0.083) populations contradicts the hypothesis of a sympatric origin of taxa, and there was little evidence for stocking or ongoing hybridization. Genome scans found only three loci that appeared to be under selection in both sympatric population pairs, suggesting a low probability of similar mechanisms of ecological segregation. However, removal of all non-neutral loci decreased the genetic distance between sympatric pairs, suggesting recent adaptive divergence at a few loci. Sympatric pairs in the two lakes were genetically distinct from the six other <it>C. albula </it>populations, suggesting introgression from another lineage may have influenced these two lakes. This was supported by an analysis of isolation-by-distance, where the drift-gene flow equilibrium observed among allopatric populations was disrupted when the sympatric pairs were included.</p> <p>Conclusions</p> <p>While the population genetic data alone can not unambiguously uncover the mode of speciation, our data indicate that multiple lineages may be responsible for the complex patterns typically observed in <it>Coregonus</it>. Relative differences within and among lakes raises the possibility that multiple lineages may be present in northern Germany, thus understanding the postglacial evolution and speciation in the <it>C. albula </it>complex requires a large-scale phylogenetic analysis of several potential founder lineages.</p

    Luciobarbus chelifensis and L. mascarensis, two new species from Algeria (Teleostei: Cyprinidae)

    Full text link
    peer reviewedCyprinids of the genus Luciobarbus are the most abundant and widespread fishes in most freshwater ecosystems in the Maghreb. In the Mediterranean basin of Morocco, Algeria and Tunisia, all species of Luciobarbus—with exception of L. guercifensis—are superficially very similar and are distinguished mostly by minor morphometric characters. Molecular characters distinguish all species well and nine species are recognised from the area, two of them described here. Luciobarbus chelifensis, from the Chelif River drainage in Algeria, is distinguished by having 41–43+1–2 lateral line scales and a very short anal fin (18–19% SL). Luciobarbus mascarensis, from the Macta River drainage in Algeria, is distinguished by having usually 41+1–2 lateral line scales, a long anal-fin (19–22%) and a short caudal peduncle (15–17% SL). An identification key is given for all African Mediterranean Luciobarbus species except for L. callensis and L. rifensis, which could not be distinguished

    Luciobarbus lanigarensis et L. numidiensis, deux nouvelles espèces de barbeaux dans la bassin de la Méditerranée de l'Afrique du nord (Teostei: Cyprinidae)

    Full text link
    peer reviewedTwo new species of Luciobarbus are described from the Mediterranean Sea basin in Morocco and Algeria. Their monophyly and phylogenetic placement are resolved by molecular analyses using two mitochondrial markers (cyt b and Dloop). Luciobarbus lanigarensis, new species, from the Tafna River drainage in Algeria and Morocco, is distinguished by having orange fins, a great predorsal length (52–59% SL) and a very long pectoral fin (79–90% HL). Luciobarbus numidiensis, new species, from the El-Kébir River drainage in Algeria, is distinguished by having a golden pectoral-fin margin, 43–47+1–3 lateral line scales and a very long anal-fin (19–23%)

    Phylogenetic relationships and biogeographical patterns in Circum-Mediterranean subfamily Leuciscinae (Teleostei, Cyprinidae) inferred from both mitochondrial and nuclear data

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Leuciscinae is a subfamily belonging to the Cyprinidae fish family that is widely distributed in Circum-Mediterranean region. Many efforts have been carried out to deciphering the evolutionary history of this group. Thus, different biogeographical scenarios have tried to explain the colonization of Europe and Mediterranean area by cyprinids, such as the "north dispersal" or the "Lago Mare dispersal" models. Most recently, Pleistocene glaciations influenced the distribution of leuciscins, especially in North and Central Europe. Weighing up these biogeographical scenarios, this paper constitutes not only the first attempt at deciphering the mitochondrial and nuclear relationships of Mediterranean leuciscins but also a test of biogeographical hypotheses that could have determined the current distribution of Circum-Mediterranean leuciscins.</p> <p>Results</p> <p>A total of 4439 characters (mitochondrial + nuclear) from 321 individuals of 176 leuciscine species rendered a well-supported phylogeny, showing fourteen main lineages. Analyses of independent mitochondrial and nuclear markers supported the same main lineages, but basal relationships were not concordant. Moreover, some incongruence was found among independent mitochondrial and nuclear phylogenies. The monophyly of some poorly known genera such as <it>Pseudophoxinus </it>and <it>Petroleuciscus </it>was rejected. Representatives of both genera belong to different evolutionary lineages. Timing of cladogenetic events among the main leuciscine lineages was gained using mitochondrial and all genes data set.</p> <p>Conclusions</p> <p>Adaptations to a predatory lifestyle or miniaturization have superimposed the morphology of some species. These species have been separated into different genera, which are not supported by a phylogenetic framework. Such is the case of the genera <it>Pseudophoxinus </it>and <it>Petroleuciscus</it>, which real taxonomy is not well known. The diversification of leuciscine lineages has been determined by intense vicariant events following the paleoclimatological and hydrogeological history of Mediterranean region. We propose different colonization models of Mediterranean region during the early Oligocene. Later vicariance events promoted Leuciscinae diversification during Oligocene and Miocene periods. Our data corroborate the presence of leuciscins in North Africa before the Messinian salinity crisis. Indeed, Messinian period appears as a stage of gradually Leuciscinae diversification. The rise of humidity at the beginning of the Pliocene promoted the colonization and posterior isolation of newly established freshwater populations. Finally, Pleistocene glaciations determined the current European distribution of some leuciscine species.</p

    Novel Relationships among Lampreys (Petromyzontiformes) Revealed by a Taxonomically Comprehensive Molecular Data Set

    Get PDF
    The systematics of lampreys was investigated using complete mitochondrial cytochrome b sequences from all genera and nearly all recognized species. The families Geotriidae and Petromyzontidae are monophyletic, but the family Mordaciidae was resolved as two divergent lineages at the base of the tree. Within Petromyzontidae, the nonparasitic Lethenteron sp. S and Okkelbergia aepyptera were recognized as distinct lineages, Lethenteron morii and Lampetra zanandreai were moved to new genera, a sister species relationship was recovered between Caspiomyzon wagneri and Eudontomyzon hellenicus, and a clade was recovered inclusive of Entosphenus hubbsi and western North American Lampetra (L. ayresii and L. richardsoni). The placement of E. hellenicus as the sister species to C. wagneri reduces the number of genera comprised entirely of parasitic species to two, Geotria and Petromyzon. The recognition of distinct lineages for O. aepyptera and Lethenteron sp. S recognizes, for the first time, lineages comprised entirely of nonparasitic species. Apart from the results mentioned above, monophyly was supported for the multispecific genera Entosphenus, Eudontomyzon, Ichthyomyzon, Lampetra (restricted to European species), and Lethenteron. Intergeneric relationships within Petromyzontidae were poorly resolved, but separate clades inclusive of Entosphenus and Tetrapleurodon (subfamily Entospheninae) and one comprised of Eudontomyzon, Lampetra, and Okkelbergia were recovered

    DNA barcode reference libraries for the monitoring of aquatic biota in Europe: Gap-analysis and recommendations for future work

    Get PDF
    Effective identification of species using short DNA fragments (DNA barcoding and DNA metabarcoding) requires reliable sequence reference libraries of known taxa. Both taxonomically comprehensive coverage and content quality are important for sufficient accuracy. For aquatic ecosystems in Europe, reliable barcode reference libraries are particularly important if molecular identification tools are to be implemented in biomonitoring and reports in the context of the EU Water Framework Directive (WFD) and the Marine Strategy Framework Directive (MSFD). We analysed gaps in the two most important reference databases, Barcode of Life Data Systems (BOLD) and NCBI GenBank, with a focus on the taxa most frequently used in WFD and MSFD. Our analyses show that coverage varies strongly among taxonomic groups, and among geographic regions. In general, groups that were actively targeted in barcode projects (e.g. fish, true bugs, caddisflies and vascular plants) are well represented in the barcode libraries, while others have fewer records (e.g. marine molluscs, ascidians, and freshwater diatoms). We also found that species monitored in several countries often are represented by barcodes in reference libraries, while species monitored in a single country frequently lack sequence records. A large proportion of species (up to 50%) in several taxonomic groups are only represented by private data in BOLD. Our results have implications for the future strategy to fill existing gaps in barcode libraries, especially if DNA metabarcoding is to be used in the monitoring of European aquatic biota under the WFD and MSFD. For example, missing species relevant to monitoring in multiple countries should be prioritized for future collaborative programs. We also discuss why a strategy for quality control and quality assurance of barcode reference libraries is needed and recommend future steps to ensure full utilisation of metabarcoding in aquatic biomonitoring.This paper is a deliverable of the European Cooperation in Science and Technology (COST) Action DNAqua-Net (CA15219) Working Group 1, led by Torbjørn Ekrem and Fedor Čiampor. Thanks to the University of Minho and University of Pécs for hosting workshops and working group meetings. We also thank staff at National Environment Agencies and others that provided national checklists of taxa used in biomonitoring, and otherwise assisted with checklist proof-reading: Jarmila Makovinská and Emília Mišíková Elexová (Slovakia); Steinar Sandøy and Dag Rosland (Norway); Mišel Jelič (Croatia); Marlen Vasquez (Cyprus); Adam Petrusek (Czech Republic); Kristel Panksep (Estonia); Panagiotis Kaspiditis (Greece); Matteo Montagna (Italy); Marija Katarzyte (Lithuania); Ana Rotter (Slovenia); Rosa Trabajo (Spain); Florian Altermatt (Switzerland); Kristian Meissner (Finland), Rigers Bakiu (Albania), Valentina Stamenkovic and Jelena Hinic (Macedonia); Patricia Mergen (Belgium); Gael Denys & the French Biodiversity Agency (France); Mary Kelly-Quinn (Ireland); Piotr Panek and Andrzej Zawal (Poland); Cesare Mario Puzzi (Italy); Carole Fitzpatrick (United Kingdom); Simon Vitecek (Austria); Ana Filipa Filipe (Portugal); Peter Anton Stæhr & Anne Winding (Denmark); Michael Monaghan (Germany); Alain Dohet, Lionel L'Hoste, Nora Welschbillig & Luc Ector (Luxembourg), Lujza Keresztes, (Romania). The authors also want to thank Dirk Steinke for providing the original European ERMS list for marine taxa and Florian Malard for comments on the manuscript. The preparation of the AMBI checklist was carried out in the scope of a Short-term Scientific Mission (ECOST-STSM-CA15219-150217- 082111) granted to SD visiting AZTI, Spain. ZC was supported by grants EFOP-3.6.1.-16-2016-00004 and 20765-3/2018/FEKUTSTRAT. TE was supported by the NorBOL-grant (226134/F50) from the Research Coun cil of Norway. BR, FL and MFG contributed through support from the GBOL project, which is generously funded by the German Federal Min istry of Education and Research (FKZ 01LI1101 and 01LI1501). MG contributed through support of the Polish National Science Centre, grants N N303 5794 39 and 2014/15/B/NZ8/00266. SF was funded by the project PORBIOTA - Portuguese E-Infrastructure for Information and Research on Biodiversity (POCI-01-0145-FEDER-022127), supported by Operational Thematic Program for Competitiveness and Internationalization (POCI), under the PORTUGAL 2020 Partnership Agreement, through the European Regional Development Fund (FEDER)
    corecore