38 research outputs found

    Substantial changes in the probability of future annual temperature extremes

    Get PDF
    Abstract Extreme temperature events causing significant environmental and humanitarian impacts are expected to increase in frequency and magnitude due to global warming. The latest generation of climate model projections, Coupled Model Intercomparison Project Phase Six (CMIP6), provides a new and improved database to investigate change in future daily scale extreme temperature events. This study examines the changes in 1, 3, and 5 day averaged annual maximum temperature in four large CMIP6 ensembles. It analyses, using a generalized extreme value (GEV) method, the change in extreme daily mean temperatures at 1.5 and 2°C of global warming, levels highlighted by the 2016 Paris Agreement, and additionally at 3°C. Extremely hot events are characterized using the annual maxima of daily near surface air temperature in the SSP370 scenario. Global changes in the mode of the distributions (location parameter) follow long‐term summer warming and show very similar spatial patterns. Changes in variability (scale parameter) show a clear trend of increases over the tropics and decreases over higher latitudes, while changes to the tails of distributions (shape parameter) show less globally consistent trends but clear signals over the Arctic sea ice, behaviour also seen in variability. Risk ratios (RRs) indicating the change in probability of hot daily extremes that currently have a 10 year return period increase globally with mean temperature change, with greater increases over the tropics. Globally averaged changes in RR over land range from 3.1–3.6 to 7.9–8.3 for 1.5 and 3°C of warming, respectively. For the latter case, this indicates previously rare, once‐in‐a‐decade summer extremes will occur almost annually in the future under high warming

    Extreme Precipitation Events over East Asia: Evaluating the CMIP5 Model

    Get PDF
    Extreme hydrological events are a direct threat to society and the environment, and their study within the framework of global climate change remains crucial. However, forecasts present numerous uncertainties

    Central-Eastern China persistent heat waves: Evaluation of the AMIP models.

    Get PDF
    Abstract Large-scale and persistent heat waves affecting central-eastern China are investigated in 40 different simulations of sea surface temperature driven global atmospheric models. The different models are compared with results from reanalysis and ground station datasets. It is found that the dynamics of heat-wave events is well reproduced by the models. However, they tend to produce too-persistent heat-wave events (lasting more than 20 days), and several hypotheses were tested to explain this bias. The daily variability of the temperatures or the seasonal signal did not explain the persistence. However, interannual variability of the temperatures in the models, and especially the sharp transition in the mid-1990s, has a large impact on the duration of heat waves. A filtering method was applied to select the models closest to the observations in terms of events persistence. The selected models do not show a significant difference from the other models for the long-term trends. Thus, the bias on the duration of the events does not impact the reliability of the model positive trends, which is mainly controlled by the changes in mean temperatures.</jats:p

    Changes in regional wet heatwave in Eurasia during summer (1979–2017)

    Get PDF
    Wet heatwaves can have more impact on human health than hot dry heatwaves. However, changes in these have received little scientific attention. Using the ECMWF Reanalysis v5 reanalysis dataset, wet-bulb temperatures ( T _w ) were used to investigate the spatial-temporal variation of wet heatwaves in Eurasia for 1979–2017. Wet heatwaves were defined as three day or longer periods when T _w was above the 90th percentile of the summer distribution and characterized by amplitude, duration and frequency. Maximum values of amplitude, close to 31 °C, occur in the Indus–Ganges plain, the lower Yangtze valley, and the coasts of the Persian Gulf and Red Sea. Significant positive trends in the frequency and amplitude of wet heatwaves have occurred over most of Eurasia though with regional variations. Changes in heatwave amplitude (HWA) are largely driven by changes in summer mean T _w . For Eurasia as a whole, increases in temperature contribute more than six times the impact of changes in relative humidity (RH) to changes in T _w HWA. Changes in T _w have a strong dependence on climatological RH with an increase in RH of 1% causing a T _w increase of 0.2 °C in arid regions, and only increasing T _w by 0.1 °C in humid regions. During T _w heatwaves in Europe, parts of Tibet, India, East Asia and parts of the Arabian Peninsula both temperature and humidity contribute to the increase in T _w , with temperature the dominant driver. During wet heatwaves in part of Russia, changes in humidity are weak and the increase in T _w is mainly caused by an increase in temperature. In the Mediterranean and Central Asia, RH has fallen reducing the increase in T _w from general warming

    Assessing the impact of very large volcanic eruptions on the risk of extreme climate events

    Get PDF
    Very large volcanic eruptions have substantial impacts on the climate, causing global cooling and major changes to the hydrological cycle. While most studies have focused on changes to mean climate, here we use a large ensemble to assess the impact on extreme climate for three years following tropical and extratropical eruptions of different sulfur emission strength. We focus on the impact of an extremely large eruption, injecting 40 Tg sulfur into the stratosphere, which could be expected to occur approximately twice a millennium. Our findings show that the eruption would have a profound effect on large areas of the globe, resulting in extremely rare drought events that under normal circumstances would occur once every century becoming very likely. Several regions such as West Africa, South and East Asia and the Maritime continent are particularly affected with the expected climate shifting well outside the usual range, by up to five standard deviations. These results have important consequences as they indicate that a severe drought in multiple breadbasket regions should be expected following a large eruption. The risk of heavy rainfall tends to decrease over the same regions but by a reduced amount, heatwaves become extremely rare, however the chance of extreme Winter cold surges do not increase by a corresponding amount, since widespread parts of the Northern Hemisphere display a winter warming. Our results show that the location of the eruption is crucial for the change in extremes, with overall changes larger for a Northern Hemisphere eruption than a tropical and Southern Hemisphere eruption, although there is a regional dependency. Simulations of different eruptions with similar forcing distributions but with different sizes are consistent with a linear relationship, however for smaller eruptions the internal variability tends to become dominant and the effect on extreme climate less detectable

    Impacts of Anthropogenic Forcings and El-Nino on Chinese Extreme Temperatures

    Get PDF
    This study investigates the potential influences of anthropogenic forcings and natural variability on the risk of summer extreme temperatures over China. We use three multi-thousand-member ensemble simulations with different forcings (with or without anthropogenic greenhouse gases and aerosol emissions) to evaluate the human impact, and with sea surface temperature patterns from three different years around the El Niño–Southern Oscillation (ENSO) 2015/16 event (years 2014, 2015 and 2016) to evaluate the impact of natural variability. A generalized extreme value (GEV) distribution is used to fit the ensemble results. Based on these model results, we find that, during the peak of ENSO (2015), daytime extreme temperatures are smaller over the central China region compared to a normal year (2014). During 2016, the risk of nighttime extreme temperatures is largely increased over the eastern coastal region. Both anomalies are of the same magnitude as the anthropogenic influence. Thus, ENSO can amplify or counterbalance (at a regional and annual scale) anthropogenic effects on extreme summer temperatures over China. Changes are mainly due to changes in the GEV location parameter. Thus, anomalies are due to a shift in the distributions and not to a change in temperature variability
    corecore