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ABSTRACT—Stephanie C. Herring, Nikolaos Christidi, Andrew Hoell, James P. Kossin, Carl J. Schreck III, and Peter A. Stott

This sixth edition of explaining extreme events of the 
previous year (2016) from a climate perspective is the 
first of these reports to find that some extreme events 
were not possible in a preindustrial climate. The events 
were the 2016 record global heat, the heat across Asia, 
as well as a marine heat wave off the coast of Alaska. 
While these results are novel, they were not unexpected. 
Climate attribution scientists have been predicting that 
eventually the influence of human-caused climate change 
would become sufficiently strong as to push events 
beyond the bounds of natural variability alone. It was also 
predicted that we would first observe this phenomenon 
for heat events where the climate change influence is most 
pronounced. Additional retrospective analysis will reveal 
if, in fact, these are the first events of their kind or were 
simply some of the first to be discovered.

Last year, the editors emphasized the need for ad-
ditional papers in the area of “impacts attribution” that 
investigate whether climate change’s influence on the 
extreme event can subsequently be directly tied to a 
change in risk of the socio-economic or environmental 
impacts. Several papers in this year’s report address this 
challenge, including Great Barrier Reef bleaching, living 
marine resources in the Pacific, and ecosystem productiv-
ity on the Iberian Peninsula. This is an increase over the 
number of impact attribution papers than in the past, and 
are hopefully a sign that research in this area will continue 
to expand in the future.

Other extreme weather event types in this year’s 
edition include ocean heat waves, forest fires, snow 
storms, and frost, as well as heavy precipitation, drought, 
and extreme heat and cold events over land. There were 

a number of marine heat waves examined in this year’s 
report, and all but one found a role for climate change 
in increasing the severity of the events. While human-
caused climate change caused China’s cold winter to be 
less likely, it did not influence U.S. storm Jonas which hit 
the mid-Atlantic in winter 2016.

As in past years, the papers submitted to this report 
are selected prior to knowing the f inal results of 
whether human-caused climate change influenced the 
event. The editors have and will continue to support the 
publication of papers that find no role for human-caused 
climate change because of their scientific value in both 
assessing attribution methodologies and in enhancing 
our understanding of how climate change is, and is not, 
impacting extremes. In this report, twenty-one of the 
twenty-seven papers in this edition identified climate 
change as a significant driver of an event, while six did 
not. Of the 131 papers now examined in this report over 
the last six years, approximately 65% have identified a 
role for climate change, while about 35% have not found 
an appreciable effect.  

Looking ahead, we hope to continue to see improve-
ments in how we assess the influence of human-induced 
climate change on extremes and the continued inclusion 
of stakeholder needs to inform the growth of the field and 
how the results can be applied in decision making. While 
it represents a considerable challenge to provide robust 
results that are clearly communicated for stakeholders 
to use as part of their decision-making processes, these 
annual reports are increasingly showing their potential 
to help meet such growing needs.
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12. ANTHROPOGENIC FORCINGS AND ASSOCIATED 
CHANGES IN FIRE RISK IN WESTERN NORTH AMERICA 

AND AUSTRALIA DURING 2015/16

Simon F. B. Tett, Alexander Falk, Megan Rogers, Fiona Spuler, Calum Turner, Joshua 
Wainwright, Oscar Dimdore-Miles, Sam Knight, Nicolas Freychet,  

Michael J. Mineter, and Caroline E. R. Lehmann

Extreme vapor pressure deficits (VPD) have been associated with enhanced wildfire risk. Using one 
model, we found for 2015/16 that human influences quintupled the risk of extreme VPD for western North 

America and increased the risk for extratropical Australia.

Introduction. In 2016, about 3.6 million hectares of 
land burned in the United States and Canada (NIFC 
2017; NFD 2017). In Canada, a wildfire southwest of 
Fort McMurray, Alberta, caused the largest wildfire 
evacuation in Alberta’s history and destroyed 2400 
homes in 2016 (McConnell 2016). Abatzoglou and 
Williams (2016; AP16 from hereon) showed that 
anthropogenic climate change has increased forest 
fire activity in the western United States. This raises 
the question if anthropogenic forcing are increasing 
the risk of devastating events outside this region such 
as the Canadian Fort McMurray fire.

During the Australian summer of 2015/16, the 
country experienced high numbers of bushfires: the 
southwest and southeast of the country were most 
affected with more than 100  000  hectares of vegetation 
burned in Tasmania (ABC News 2016a). Over the 
course of this summer, 408 residential and 500 non-
residential buildings were destroyed nationwide. This 
fire season was moderately destructive with insured 
losses of about AUD $350 million (ABC News 2016b).

AP16 found for the western United States a strong 
link between the spring–summer vapor pressure 
deficit (VPD) and the annual burned area. In this 
paper, we build on this work using monthly average 
VPD as a proxy for fire risk during the summer of 
2016 for extratropical Australia (October–February) 
and western North America (May–August) though 

this link has not been directly established for either 
region. VPD is an absolute measure of the state of 
atmospheric moisture, specifically the difference 
between the saturation vapor pressure and the actual 
vapor pressure of the atmosphere (Seagar et al. 2015). 
Changes in VPD are associated with the drying of 
both live vegetation and litter fuels, and it is only 
when vegetation and litter fuels are sufficiently dry 
that fires can both ignite and spread (Bradstock 2010).

Methods. To estimate the effect of anthropogenic cli-
mate change on VPD in western North America and 
extratropical Australia, we compared three different 
ensembles of the HadAM3P atmosphere-only model 
(Massey et al. 2015), which has a resolution of 1.875° 
× 1.25°, with each other and the ERA-Interim (ERAI) 
reanalysis (Dee et al. 2011). The ensembles are:  

•	 Hist15–16: Driven by observed sea surface 
temperatures (SST), sea ice coverage (SIC) as 
well as current concentrations of greenhouse 
gases and estimates of aerosol emissions (up-
dated from Tett et al. 2013). 

•	 Nat15–16: Driven by SST, SIC, greenhouse 
gases, and aerosol emissions as they are esti-
mated to have been without human induced 
climate change with natural SST (Fig. ES12.1a) 
and SIC conditions described in the online 
supplement.

•	 Historical: Ensemble of 5 continuous simula-
tions from December 1959 to November 2009 
described by Tett et al. (2013).

Both Hist15–16 and Nat15–16 have 24 members, 
each using slightly different initial conditions, start-
ing in December 2014 and ending in August 2016. 
We analyze the 12-month period September 2015 to 

AFFILIATIONS: Tett, Rogers, Freychet, Mineter, and Lehmann—
School of Geosciences, University of Edinburgh, Edinburgh, United 
Kingdom; Falk, Spuler, Turner, Wainwright, Dimdore-Miles, and 
Knight—School of Physics, University of Edinburgh, Edinburgh, 
United Kingdom.

DOI:10.1175/BAMS-D-17-0096.1

A supplement to this article is available online (10.1175 
/BAMS-D-17-0096.2)
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August 2016. VPD is defined as (Seager et al. 2015; 
Wallace and Hobbs 2006):

  	

and, neglecting moisture mass in the atmosphere, 
can be rewritten as:

                 Eq. (1)

where e(es) is the (saturated) vapor pressure, q the 
specific humidity, p* the surface pressure, and RH the 
relative humidity near the surface. 

We computed VPD in the HadAM3P simulations 
and ERAI reanalysis using Eq. (1) applied to grid-
ded monthly mean data neglecting nonlinearity. For 
HadAM3P, q and RH were 1.5 meter values while for 
ERAI we interpolated q and RH from monthly mean 
pressure level data to the surface. We use as a reference 
period the 30 years 01 December 1979–30 November 
2009 and VPD, qsat (q/RH), q, and p* were converted 

to anomalies against this period from the Historical 
or ERAI values.

The western North America (WNA) region was 
defined as in Giorgi and Francisco (2000; GF00), 
while we defined an extratropical Australian region 
(extAUS) as the GF00 AUS region south of 23.5°S.  
Fire does not occur in all places in the regions, so we 
defined a fire-mask to keep locations in our analysis 
where fire occurs. This mask was constructed from 
the MODIS CMG dataset using Aqua satellite mea-
surements (Giglio et al. 2009) for 2003–16. Each 
0.5° × 0.5° grid box and climatological month, was 
defined as a fire grid box if the fraction of pixels 
with fire detected for 2003–16 was greater than 10−5 
(Figs. ES12.1b–e show regions and fraction of fire 
pixels for January and July). The 10−5 is arbitrary and 
corresponds to roughly one detected fire pixel per 
month. Simulated (and reanalysis) VPD, q, RH, qsat (q/
RH), and p* anomalies and normals were bilinearly 
interpolated to this grid from the model/reanalysis 
grid, data only kept at fire grid boxes, and then area 

Fig. 12.1. VPD (Pa) comparison between ERAI (black dot-dashed, squares) and Historical (black lines, circles): 
(a),(c) 01 Dec 1979–Nov 2009 normals; (b),(d) std. dev. for WNA and extAUS, respectively. Gray shading indi-
cates where reanalysis and Historical std. dev. are consistent (5%–95%). Std. dev for Sep 2105–Aug 2016 from 
Hist15–16 (red circles, lines) and Nat15–16 (blue triangles, dashed lines) are also shown in (b),(d). The x-axis on 
all plots shows climatological month (labels on bottom plots only).
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averaged over the two regions to produce time series. 
It is these time series that we subsequently analyze. 
Uncertainties on ensemble averages were computed 
by bootstrapping (Efron and Tibshirani 1994) over 
the ensemble members.

We define as a threshold for extreme events the 
ERAI maximum regional average VPD anomaly, for 
each calendar month, from the reference period cor-
responding to a one-in-30-year event. To compute the 
risk of exceeding this threshold we compute, for each 
month, the fraction of the Nat15–16 and Hist15–16 
anomalies that exceed it. We test sensitivity to vari-
ance errors by scaling the Hist15–16 and Nat15–16 
anomalies by the ratio of the monthly mean standard 
deviations from ERAI and Historical anomalies for 
the reference period.

Results. Model simulations are evaluated by comparing 
the Historical ensemble with ERAI. HadAM3P’s VPD 
biases are small relative to the annual cycle though 
are negative for most of the year in WNA (Fig. 12.1a) 
with largest differences in June of −180 Pa. HadAM3P 

VPD variance appears consistent with that of ERAI 
(Fig. 12.1b) though the model has significantly smaller 
variance than ERAI for January–March, and there is 
no strong evidence of an increase in variability due 
to human forcings. 

For extAUS Historical mean, VPD is, apart from 
November and December, consistent with that from 
ERAI (Fig. 12.1c). In November and December biases 
peak at about +120 Pa. Variability from reanalysis and 
HadAM3P is broadly consistent though reanalysis 
variability during austral summer is generally larger 
than simulated in HadAM3P. For most of the year, ex-
tAUS has larger variability in Hist15–16 and Histori-
cal than in Nat15–16 (Fig. 12.1d). Mean VPD values 
peak in WNA in June–August while in extAUS they 
are largest during October–February. It is these com-
ponents of the annual cycle we subsequently focus on.

We now compare ensemble means from Hist15–16 
with Nat15–16. For WNA, differences between the 
two ensembles are significant throughout most of the 
year with largest differences in July and August 2016 
(Fig. 12.2a). For extAUS the Hist15–16 (Nat15–16) 

Fig. 12.2. (a) Ensemble-mean VPD anomalies (Pa) from Hist15–16 (circles) and Nat15–16 (triangles) for WNA 
(red) and extAUS (green). Shading shows ±2σ uncertainty. (b) Maximum VPD anomaly (Pa) for each climato-
logical month [thick solid line and year (number) when max occurred] and anomaly for 15/16 (squares) from 
ERAI. Shading shows 5%–95% ranges from Hist15–16 ensemble with colors as (a). (c) Fraction (%) of Nat15–16 
(dashed lines, triangles) and Hist15–16 (solid lines, circles) ensembles that exceeded 1979–2009 ERAI maximum 
VPD value for each month. Thin pale lines show same when anomalies scaled to correct for variance errors. 
All subplots use same common x-axis [values shown in (c)].
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ensemble has positive (negative) anomalies for most 
of the period suggesting that human influences have 
increased VPD. However, during December 2015 and 
January 2016 Nat15–16 shows positive anomalies.

We compare the Hist15–16 ensemble anomalies 
with ERAI (Fig. 12.2b). For both regions Hist15–16 
is broadly consistent with ERAI though extAUS in 
October 2015, and WNA in February 2016 are ex-
ceptions to this (Fig. 12.2b). ERAI VPD values for 
September 2015 to August 2016, though generally 
larger than Nat15–16, are not very exceptional with 
almost all values being smaller than the maximum 
1979–2009 VPD value. Maximum ERAI anomalies 
occur throughout the reference period with no obvi-
ously preferred year (or decade). 

We now investigate the probability, for both 
ensembles, of crossing the 1979–2009 threshold. In 
extAUS, only in January 2016 do any of the Nat15–16 
members cross the ERAI  threshold (Fig. 12.2c). In 
WNA, the threshold is exceeded once in each of 
September through November 2015. For extAUS, 
there is an approximate doubling of the probability 
of exceeding the thresholds for October–February 
with a probability of about 7% (4%) for Hist15–16 
(Nat15–16). May 2016, when the Fort McMurray fires 
started, has near-zero anomaly for WNA in both en-
sembles and reanalysis suggesting that this event was 
not strongly linked to continental scale VPD changes, 
and no ensemble members cross the 30-year threshold 
(Fig. 12.2c) during this month. However, during June 
16–August 16, we find several extreme VPD values 
in the Hist15–16 ensemble, and no such events in the 
Nat15–16 ensemble (Fig. 12.2c). The average prob-
ability of crossing the threshold during this period 
is 19%. Making a relative risk estimate is difficult 
when the probability of events in the natural world 
are small. Being very conservative we assume, with 
24 ensemble members, that the probability of crossing 
the threshold in Nat15–16 is 4% (1/24) giving a risk 
ratio of about 5, though larger values are possible.  

We tested the sensitivity of these results to correct-
ing for variance errors and found little sensitivity in 
WNA, but the risk for extAUS changed to 12% (3%) 
for Hist15–16 (Nat15–16) suggesting a risk ratio of 
about 4. Being conservative and taking the risk of 1:30 
events for Nat15–16 as 4% then the risk of extreme 
VPD events, in extAUS, has increased by 2–3 times.

Our estimation of risk ratios is dependent on 
HadAM3P and the boundary conditions used. Had-
AM3P compares well with the ERAI VPD climatology 
(Fig. 12.1a) and the reanalysis values for September 
2015–August 2016 are largely contained within the 

Hist15–16 ensemble (Fig. 12.2a). We decompose the 
changes in VPD into changes in saturated humidity, 
surface pressure, relative humidity, and residual ef-
fects (see online supplement and Fig. ES12.2). We find 
that changes in saturated humidity (likely dominated 
by changes in temperature) and relative humidity 
(likely model sensitive) are the dominant drivers of 
VPD in both regions. In WNA, changes in qsat make 
the largest contribution with a small enhancement 
by reductions in RH. In contrast, for extAUS changes 
in RH offset changes in qsat suggesting some model 
sensitivity in that region. Overall, we conclude that for 
WNA that human influences have very considerably 
increased the risk of extreme VPD values in June–
August 2016, though not for the Fort McMurray fire 
period in May. For extratropical Australia, we find a 
weaker human influence with a doubling of the risk 
of extreme VPD. Assuming wildfire in extAUS and 
WNA, like in the western United States, is related 
to VPD then human influences have considerably 
increased the risk of one-in-30-year wildfire events.
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Table 1.1. SUMMARY of RESULTS
ANTHROPOGENIC INFLUENCE ON EVENT METHOD USED

Total 
Events

INCREASE DECREASE NOT FOUND OR UNCERTAIN

Heat

Ch. 3: Global

Ch. 7: Arctic

Ch. 15: France

Ch. 19: Asia 

 Heat

Ch. 3: CMIP5 multimodel coupled model assessment with piCont, historicalNat, and historical forcings

Ch. 7: CMIP5 multimodel coupled model assessment with piCont, historicalNat, and historical forcings

Ch. 15: Flow analogues conditional on circulation types

Ch. 19: MIROC-AGCM atmosphere only model conditioned on SST patterns

Cold
Ch. 23: China

Ch. 24: China
Cold

Ch. 23: HadGEM3-A (GA6) atmosphere only model conditioned on SST and SIC for 2016 and data fitted to  
GEV distribution

Ch. 24: CMIP5 multimodel coupled model assessment

Heat & 
Dryness Ch. 25: Thailand Heat & Dryness Ch. 25: HadGEM3-A N216 Atmosphere only model conditioned on SST patterns

Marine Heat

Ch. 4: Central Equatorial Pacific

Ch. 5: Central Equatorial Pacific

Ch. 6: Pacific Northwest

Ch. 8: North Pacific Ocean/Alaska

Ch. 9: North Pacific Ocean/Alaska

Ch. 9: Australia

Ch. 4: Eastern Equatorial Pacific Marine Heat

Ch. 4: SST observations; SGS and GEV distributions; modeling with LIM and CGCMs (NCAR CESM-LE and 
GFDL FLOR-FA) 

Ch. 5: Observational extrapolation (OISST, HadISST, ERSST v4)

Ch. 6: Observational extrapolation; CMIP5 multimodel coupled model assessment

Ch. 8: Observational extrapolation; CMIP5 multimodel coupled model assessment

Ch. 9: Observational extrapolation; CMIP5 multimodel coupled model assessment

Heavy 
Precipitation

Ch. 20: South China

Ch. 21: China (Wuhan)

Ch. 22: China (Yangtze River)

Ch. 10:  California (failed rains)

Ch. 26: Australia

Ch. 27: Australia

Heavy 
Precipitation

Ch. 10: CAM5 AMIP atmosphere only model conditioned on SST patterns and CESM1 CMIP single coupled  
model assessment

Ch. 20: Observational extrapolation; CMIP5 and CESM multimodel coupled model assessment; auto-regres-
sive models

Ch. 21: Observational extrapolation; HadGEM3-A atmosphere only model conditioned on SST patterns; 
CMIP5 multimodel coupled model assessment with ROF

Ch. 22: Observational extrapolation, CMIP5 multimodel coupled model assessment 

Ch. 26: BoM seasonal forecast attribution system and seasonal forecasts

Ch. 27: CMIP5 multimodel coupled model assessment

Frost Ch. 29: Australia Frost Ch. 29: weather@home multimodel atmosphere only models conditioned on SST patterns; BoM seasonal 
forecast attribution system

Winter Storm Ch. 11: Mid-Atlantic U.S. Storm "Jonas" Winter Storm Ch. 11: ECHAM5 atmosphere only model conditioned on SST patterns

Drought
Ch. 17: Southern Africa

Ch. 18: Southern Africa
Ch. 13: Brazil Drought

Ch. 13: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on  
SST patterns; HadGEM3-A and CMIP5 multimodel coupled model assessent; hydrological modeling 

Ch. 17: Observational extrapolation; CMIP5 multimodel coupled model assessment; VIC land surface  
hdyrological model, optimal fingerprint method 

Ch. 18: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SSTs, CMIP5 multimodel coupled model assessment

Atmospheric 
Circulation Ch. 15: Europe

Atmospheric

Circulation
Ch. 15: Flow analogues distances analysis conditioned on circulation types

Stagnant Air Ch. 14: Western Europe Stagnant Air Ch. 14: Observational extrapolation; Multimodel atmosphere only models conditioned on SST patterns 
including: HadGEM3-A model; EURO-CORDEX ensemble; EC-EARTH+RACMO ensemble

Wildfires Ch. 12: Canada & Australia (Vapor  
Pressure Deficits)

Wildfires Ch. 12: HadAM3 atmospere only model conditioned on SSTs and SIC for 2015/16

Coral 

Bleaching

Ch. 5:  Central Equatorial Pacific

Ch. 28: Great Barrier Reef
Coral  

Bleaching

Ch. 5: Observations from NOAA Pacific Reef Assessment and Monitoring Program surveys

Ch. 28: CMIP5 multimodel coupled model assessment; Observations of climatic and environmental conditions 
(NASA GES DISC, HadCRUT4, NOAA OISSTV2)

Ecosystem 
Function

Ch. 5: Central Equatorial Pacific (Chl-a 
and primary production, sea bird abun-
dance, reef fish abundance)

Ch. 18: Southern Africa (Crop Yields)

Ecosystem 

Function

Ch. 5: Observations of reef fish from NOAA Pacific Reef Assessment and Monitoring Program surveys; visual  
observations of seabirds from USFWS surveys. 

Ch. 18: Empirical yield/rainfall model

El Niño Ch. 18: Southern Africa Ch. 4: Equatorial Pacific (Amplitude)                    El Niño

Ch. 4: SST observations; SGS and GEV distributions; modeling with LIM and CGCMs (NCAR CESM-LE and 
GFDL FLOR-FA) 

Ch. 18: Observational extrapolation; weather@home multimodel atmosphere only models conditioned on 
SSTs, CMIP5 multimodel coupled model assessment

TOTAL 18 3 9 30
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