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Abstract
Eastern China is regularly exposed to extreme precipitation with significant socio-economical consequences. Following an 
observational analysis in a first part of this study, here the ability of the Coupled Model Intercomparison Project Phase 6 
models to reproduce the main modes of interannual variability of 5-day summer extreme precipitation over eastern China 
is evaluated, using an empirical orthogonal teleconnection (EOT) method. These models capture the main patterns and 
magnitudes of the different EOT patterns, although the North China mode is less well represented. Models also reproduce 
the dynamical features associated with each mode. There is no systematic improvement in the ability of models to simulate 
either the pattern or the 5-day intensity when using higher resolution models compared to coarser resolution ones. Instead, 
multi-member or multi-model ensembles lead to results closer to observations. Using a low mitigation projection pathway 
(SSP-370), it is shown that the risk of the most extreme 5-day precipitation events by about 40%, 80% and more than 150% 
for global-mean warming levels, relative to 1850–1900, of + 1.5, + 2 and + 3 ◦ C respectively. This increase is found to be 
more significant for 5-days events than for seasonal scale precipitation, consistent with previous studies.

Keywords Extreme precipitation · CMIP6 · East Asia · Monsoon · Climate projections

1 Introduction

Heavy persistent precipitation has a large impact on society 
and agriculture. It can cause flooding, crop loss, landslides 
and other major disruptions such as the events along the 
lower reaches of the Yangtze River in China in May 2016 
(Li et al. 2018a) or during the winter of 2018/2019 (Hu et al. 
2021). Du et al. (2019) indicated that persistent extremes 
were increasing in most regions globally. China is particu-
larly exposed to heavy precipitation and has experienced 
intensified events during the past decades (e.g. Li et al. 2012; 
Zhai et al. 2005; Qian et al. 2007; Gu et al. 2017). How-
ever, Wu et al. (2019) showed that this change may not be 
spatially uniform, with observed decreasing trends over the 

northern regions. Compared to short lasting extreme pre-
cipitation, e.g., those related to tropical cyclones (e.g. Pei 
et al. 2018), sustained precipitation over several days is often 
related to the monsoon seasonal circulation (Wu et al. 2019). 
Eastern China is particularly vulnerable to this type of per-
sistent precipitation, as highlighted by many recent studies 
(e.g. Chen and Zhai 2013; He and Zhai 2018).

Anthropogenic influence on heavy precipitation has been 
discussed in many previous works at a global scale (e.g. Min 
et al. 2011; Fowler et al. 2021) or focused on China (e.g. 
Burke et al. 2016; Li et al. 2018b; Sun et al. 2019). To pre-
dict future changes in such events, one must first have a clear 
idea of whether climate models are able to reproduce the 
observed signal over the historical period. If they prove to 
be unrealistic or inconsistent with observation, then climate 
projections with such models are unlikely to be trustworthy. 
This paper aims to answer the following questions: Can the 
Coupled Model Intercomparison Project Phase 6 (CMIP6) 
climate models, when ran with historical forcings Gillett 
et al. (2016), reproduce the observed persistent precipita-
tion signal over Eastern China? If so, are they reproducing 
the signal for the right reasons? And what are the expected 
future changes in risk?
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The study builds upon Tian et al. (2021) (referred as Part 
I hereafter), focusing on the summer 5-day maximum pre-
cipitation (RX5d). The ability of models to reproduce the 
main patterns of the observed RX5d over Eastern China and 
the related circulation features are analysed. This provides 
a solid physical ground to conduct further analysis with the 
models, investigating past and future changes in the risk 
of extreme RX5d. The impact of model horizontal resolu-
tion in reproducing the observed signal is also investigated. 
Previous studies have shown, for the Coupled Model Inter-
comparison Project Phase 5 (CMIP5) models (Taylor et al. 
2012), that there was a complex non-systematic relationship 
between the models’ resolution and their ability to simu-
late the monsoon circulation and the associated precipita-
tion (Wu et al 2017). Freychet et al. (2017) indicated that 
even with higher resolution models, discrepancies between 
observed and simulated precipitation could be significant 
and are highly model-dependent.

Data and techniques used for this study are presented in 
Sect. 2. Section 3 provides a complete model evaluation 
analysis. In Sect. 4, recent and future changes in RX5d are 
investigated. Finally, discussion and concluding remarks are 
presented in Sect. 5.

2  Data and method

2.1  Datasets

32 individual models from CMIP6 (Eyring et al. 2016) are 
selected, based on the availability of daily precipitation data 
(Table 1) for the historical period (1850–2014). For multi-
members individual models, analysis is computed for each 
ensemble member individually and then averaged to provide 
a single output for the model. To compare with models, a 
dataset of daily precipitation over China is used (OBS), pro-
vided by the National Meteorological Information Center 
(NMIC), China Meteorological Administration (CMA). This 
data was rigorously quality controlled, as described in Chen 
and Frauenfeld (2014) and is available over 1961–2017. For 
all analyses comparing models with OBS, the 1961–2014 
historical period is used as it is common to all datasets.

2.2  Heavy precipitation definition (RX5d)

The analysis focuses on June–July–August (JJA). Heavy pre-
cipitation is defined as the maximum 5-day accumulated pre-
cipitation (RX5d) during the JJA season at each grid point. 
To allow direct comparison between datasets, all model and 
observed daily precipitation are first interpolated (bilinear 
interpolation) to a N96 grid (about 2 ◦ horizontal resolu-
tion, with 192 points in longitude and 145 points in lati-
tude) before computing RX5d. Eastern China is defined as 

Mainland China bounded by 103◦ E–135◦ E and 17◦ N–55◦ 
N. As the focus is on socio-economically damaging events 
and for consistency with OBS, we consider only land points. 
For models that use a fractional land/sea grid, land points are 
defined as the ones with a fractional land area > 0.5.

Note that the Rx5d computation used here does not neces-
sarily guarantee persistent rainfall for 5 days. Indeed, Rx5d 
could be due to an exceptional heavy daily rainfall only. It 
was however verified that in the majority of cases Rx5d is 
related to several days of rain, and that only a very few cases 
arise from a single day (or 2 days) of rainfall. Moreover, it 
is also verified that models are consistent with the observed 
signal. Thus, both models and observation include a diver-
sity of events in the definition of Rx5d.

2.3  RX5d modes of variability (EOTs)

As in Part I, the main modes of variability for RX5d are 
identified using Empirical Orthogonal Teleconnections 
[EOTs, Van den Dool et al. (2000)]. This consists of finding 
a base point, in the defined domain, which has the high-
est correlation (along the time dimension) with all other 
grid points of the domain. This is considered as the first 
EOT base point and the correlation pattern with other grid 
points is the first EOT pattern. Then, the linear relationships 
between the EOT base point and the other grid points is 
subtracted (to remove the first mode of variability) and the 
process is repeated to find a second base point explaining 
the most variability of the retained signal, and so on for each 
successive EOT. This method finds the main modes of inter-
annual variability along the time dimension. It indicates how 
much a given base point can explain the variability of all 
other grid points of the domain. As RX5d represents summer 
maxima, positive correlations indicate that RX5d covaries 
similarly at interannual timescale across space. This does not 
mean that the RX5d maxima are reached at the exact same 
day each year across the domain. Similar methods were used 
in Part I to evaluate the precipitation signal in observations.

In Part I EOT base points were identified in OBS and only 
those modes which at least 5% of the total domain variability 
are used. This gives four modes (see Part I). They corre-
spond to Northern China (EOT1), south of the Yangtze river 
(EOT2), Southern China (EOT3) and the north Yangtze river 
basin (EOT4). The distribution of these modes highlights the 
latitudinal organisation of heavy precipitation in this region, 
which will be discussed later and they correspond to differ-
ent phases of the East Asian summer monsoon. EOT2 and 
EOT4 patterns look similar but they correspond to different 
phases of a strengthened monsoon front. EOT2 is related to 
a stronger front around 28◦ N during the early summer (mid-
June) while EOT4 is related to an enhanced front around 
34◦ N and happens later in the summer, from late June to 
July. Identical base points are used for this work and their 
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regression patterns are shown in Fig. 1. This means that 
EOTs patterns in the models are computed by regressing 
RX5d on each base point identified in OBS. With this forced 
EOT method, the main modes of variability are similar in 
OBS and models. However, it does not necessarily mean that 
the associated patterns or mechanisms are similar. This is 
precisely what will be investigated in the following section.

For each EOT, a base region is defined as a 3 × 3 grid box 
(6◦ × 6 ◦ ) centred on the base point. For intensity computa-
tions, RX5d is then averaged over this base region. This is 
consistent with the average scale of EOT patterns (Fig. 1) 
and makes sure that results are insensitive to a single grid 
point. Thus, when referring to the intensity of an EOT, it is 
the mean intensity of RX5d over the base region (3× 3 grid 
box around the base point).

2.4  Test for significant model‑observation 
differences

Due to the chaotic nature of precipitation, even a perfect 
model would not reproduce identical patterns to the observa-
tions. To evaluate the range of error expected when correlat-
ing precipitation patterns between models and observations, 
an auto-correlation test is used. With an ensemble size of 
16, the UKESM1-0-LL (Sellar et al. 2019) model is used to 
explore this. EOT patterns from one member (REF) are con-
sidered as the reference [(i.e. following the same “simulated 
observation” methodology as in Freychet et al. (2021)]. The 
other members are considered as model results, either by 
using single members or by pooling together several mem-
bers together (up to seven members together). The spatial 
correlations between REF and the different model result 
cases are computed. Then a different member is chosen 
as REF and the process is repeated. Results are combined 
together to estimate the distribution of correlations when 

correlating “observations” to themselves, as a function of 
ensemble size. Thus it shows the range of correlations where 
a model signal can be considered as consistent with observa-
tion patterns.

2.5  Regression analysis

A regression analysis is used to establish the link between 
large scale circulation and the EOT signals. This analysis is 
performed at both the seasonal and 5-day time scales. For 
the former, the summer mean of a dynamical variable is 
regressed on the interannual variability of each EOT inten-
sity. This links the strength of Rx5d to the seasonal circula-
tion. For the latter, the 5-day mean of a dynamical variable 
is extracted each year when Rx5d occurs. Then this signal 
is regressed on the interannual variability of EOT intensity. 
This allows identification of the circulation patterns related 
to each EOT.

2.6  Change in risk of RX5d

The change in the most intense RX5d events is investigated 
by comparing different periods in the CMIP6 ensemble. The 
reference period used is 1961–1980 as that is the earliest 
period with accessible and reliable observations. The his-
torical change is defined by the shift between the reference 
period and 1991–2010. Three projection periods are also 
defined, using data from the Shared Socioeconomic Path-
ways 3 scenario (Low challenges to mitigation, high chal-
lenges to adaptation) leading to an increase in 7.0 W.m−2 
radiative forcing by the end of the century (SSP370, Riahi 
et al. (2017)), when individual models reach + 1.5, + 2 or 
+ 3 ◦ C global mean warming levels (at decadal-scale) com-
pared to the pre-industrial (1850–1900) period. To identify 
the warming targets, a method similar to Dosio et al. (2018) 

Fig. 1  Regression patterns (mm/5-day) of the seasonal 5-day maximum precipitation on the first four normalized EOTs identified in OBS during 
1961–2014 period. Regressions are computed against the normalized precipitation at the base point (shown by orange symbols) of each EOT
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or Slater et al. (2021) is used. SSP370 was selected based on 
the number of individual model with available daily data at 
the time of the analysis and also because all models reach the 
three considered warming targets in this scenario. To avoid 
potential over-representation of a single model, only the first 
member of each individual model is selected. Results using 
all members of each model were also tested but were not 
found to be significantly different.

For each period, RX5d events from 20 years of all models 
outputs are pooled together and a generalized extreme value 
(GEV) is fit to the pooled data. Extreme RX5d is defined as 
the 95th percentile (P0) from the reference period. Then the 
probability (P1) to reach similar RX5d values is computed 
for other target periods based on their GEV fits. The Risk 
Ratio (RR) is then calculated as RR = P1/P0. Thus, a RR 
larger (smaller) than 1 indicates an increase (decrease) in 
the probability of extreme RX5d events compared to the 
reference period. Confidence intervals on the RR are com-
puted with a bootstrapping method, reproducing the RR a 
thousand times from random samples and taking the 5–95% 
confidence interval.

2.7  Dynamics

To study the circulation mechanisms related to RX5d, sev-
eral dynamical fields are used. The sea level pressure and the 
horizontal wind at 850 hPa show the low level circulation. 

The zonal wind at 200 hPa is used to show the East Asian 
jet position. The geopotential height at 500 hPa indicates 
the state of the mid-troposphere. To study the transport of 
humidity, the moisture flux convergence is computed using 
vertically integrated atmospheric moisture and wind, and its 
dynmical and thermodynamical contributions are separated 
following the methodology from Wu et al (2017) and Tian 
et al. (2019). Finally, the impact of the ocean state is consid-
ered through the sea surface temperatures.

3  Ability of CMIP6 to reproduce observed 
RX5d

3.1  Characteristics of RX5d modes

The characteristics of the main modes of interannual varia-
bility of RX5d are analysed. Their magnitudes, spatial struc-
tures and seasonal-cycle timings are investigated. Higher 
and lower resolution models (1◦ or less and 1.8◦ or more, 
respectively) are separated in two sub-ensembles to high-
light the potential role of horizontal resolution in the ability 
of models to represent EOTs. As a reminder to Part I, the 
observed spatial patterns of EOTs are shown in Fig.1.

When looking at the performance of individual models 
(Fig. 2, coloured symbols) they are all within the range of 
internal variability (represented by the grey box plots in 

Fig. 2  Boxplot: Auto-correlation test with UKESM model (gray box-
plots), as explained in Methods section. Boxes show the 25th–75th 
quantile range, the notches being the confidence interval around the 
median, and bars indicate 1.5 × the interquantile range outside of 
the box. X-axis indicates the number of ensemble members used to 
compute the ensemble average. The boxplots show the distribution of 
the correlations between the mean from sub-ensembles of UKESM 
with a single UKESM simulations. Colour symbols: correlation 
between CMIP6 EOT patterns and Observations. Blue and red sym-

bols indicate higher and lower resolution individual models respec-
tively. Orange symbols with black contouring show other models (i.e. 
medium resolution). The location of these symbols along the X-axis 
indicate the number of members averaged (across a single model) 
before computing the correlation. Note that symbols are slightly off-
set around their x positions to avoid too much superimposition. Mod-
els with more than 7 members are displayed on the right border of the 
plots
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the figure, corresponding to the significance test detailed in 
Sect. 2.4). No individual model can be excluded based on the 
EOT spatial correlation results. Moreover, no systematic dif-
ference is found between higher and lower resolution mod-
els. Models with several members tend to have a better cor-
relation with OBS, as expected from the auto-correlation test 
(Sect. 2.4). This suggests that using multi-member model 
means is beneficial to get patterns closer to the observed 
signal, at least for the events considered in this study. The 
model-OBS correlations are generally weaker for the EOT1 
regression patterns. This mode corresponds to the northward 
migration of the monsoon front at the end of the summer, 
and based on these results, current climate models seem to 
have difficulties reproducing the latitudinal migration of the 
mode or its extent correctly. But the auto-correlation test 
also indicates a large internal variability of patterns, with 
correlations between members sometimes reaching close to 
0. This means that even within the same model, North China 
precipitation signals vary greatly and it is difficult to define 
a robust pattern.

The spatial pattern of the normalized simulated EOT in 
the models (Fig. 3) is similar to the observed EOT, irre-
spective of model resolution. The main difference between 
higher and lower resolution models is the strength of the 
regression coefficient around the base point. Lower resolu-
tion models have slightly higher coefficients suggesting that 
precipitation is correlated over larger scales. All models fail 
to capture part of the EOT1 signal over the Yangtze river 
basin. Indeed, in OBS this first mode of variability has heavy 
precipitation over North-East China and a second weaker 
positive precipitation maxima over Central-East China, with 
an overall positive signal over the remaining areas of East 
China. In the models, only the maxima over NE China is vis-
ible while no signal is visible over the Yangtze river (where 
the second maximum should be located). Thus, precipitation 
may be too systematically confined to the North part of the 
region in the model. This could lead to an underestimation of 
extreme precipitation risk associated with this mode, espe-
cially over the Yangtze river basin.

Fig. 3  As Fig.1 but for the multi-model ensemble mean of the regres-
sions. Regressions are computed against the normalized precipitation 
at the base point (orange circles) of each EOT defined from OBS. 

Results are shown for all models (top), high resolution models only 
(higher than 1.1◦ , middle) and low resolution models only (coarser 
than 1.8◦ , bottom)
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The intensity of each RX5d mode for model simulations 
is different from OBS, ranging from 80 mm for EOT1 to 
170 mm for EOT2 (Fig. 4, top row). Although this contrast 
is broadly captured in most of the models, they tend to over-
estimate the mean intensity of EOT1 while underestimating 
the intensity of EOTs 2 and 4. Resolution has a clear effect 
on the magnitude of RX5d, with higher resolution models 
showing more intense precipitation. However, this does not 
mean a systematic improvement of performance by increas-
ing resolution. Indeed, for EOT1 for example, higher resolu-
tion models have larger biases than do lower resolution ones. 
It is noticeable that the multi-model ensemble means and 
most of the individual model means are not within the range 
of OBS variability (gray shading). There is also less consist-
ency between models for EOT3 (southern China), many of 
them being outside the range of OBS variability. Another 
noticeable point is that models tend to overestimate the inter-
annual variability of RX5d (Fig. 4, bottom row), especially 
for EOT1 and EOT3, which implies wider distributions and 
potential discrepancies between OBS and models for the 
most extreme events.

The timing of each EOT is important as it indicates their 
link to monsoon front migration during summer. EOTs 2, 

3 and 4 tend to occur from early to mid-summer (Fig. 5a) 
which is the mature phase of the summer monsoon. EOT1 
occurs much later in the summer, during the latest phase of 
the monsoon when it migrates to its northward limit (Chen 
et al. 2004). The multi-model ensemble-mean is close to the 
observed signal and reproduces well the different timings. It 
is noticeable that the timing of each EOT has considerable 
variability. Thus, even if each EOT corresponds preferably 
to one phase of the summer monsoon, they can still happen 
outside of these phases. This large variability is present in 
OBS, individual models and multi-models ensemble results. 
Again higher resolution is not found to improve the model 
results systematically (Fig. 5b, c).

In summary, these results suggest that the CMIP6 models 
are able to capture the main spatial and temporal character-
istics of each EOT. The performance of ensemble means 
(either multi-member or multi-model) are usually better than 
each individual realisation. Model resolution does not seem 
to impact the results presented here in a systematic way.

Fig. 4  Top row: RX5d mean intensity of each EOT base region 
(mm/5-day) in OBS (white star), individual models (small coloured 
symbols) and ensemble mean of all (large white diamond), higher 
resolution (large blue diamond) and lower resolutions (large red dia-
mond) models. Numbers refer to individual models listed in Table 1. 

Grey shading indicates OBS two standard error (computed from the 
interannual variability) around its mean. Bottom row: Interannual 
variability (mm/5-days; defined as 1 standard deviation) of individual 
models (symbols) and OBS (grey shading)
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3.2  Dynamics of main RX5d modes

The main mechanisms associated with each EOT are inves-
tigated in this section. Part I indicated that EOT1 is related 
to strong East Asian Summer Monsoon and northward dis-
placement of upper-tropospheric westerly jet, EOT2 and 
EOT4 are related to an enhanced and stable monsoon front 
and strong western North Pacific subtropical high, and EOT3 
is associated with anomalous southerly wind bringing moist 
air from the South China Sea. The objective here is to verify 
that models represent extreme precipitation correctly for the 
right reason, i.e. with the same dynamical signal as in obser-
vations. Figures from observations are not shown here and 
readers are referred to Part I of the study for more details. 
The regression method is described in Sect. 2.5 of this paper.

The vertically integrated moisture flux convergence 
(MFC) patterns corresponding to the different EOTs are 
shown in Fig. 6. As expected, MFC is enhanced around the 
base point of each EOT. The MFC patterns associated with 
EOTs 2 and 4 indicate an overall increase in the monsoon 
front intensity, with a clear extension eastward. EOTs 1 and 
3 are confined further inland. These features closely resem-
ble the observed signal (Part I, their Fig. 5).

The contributions of thermodynamics and dynamics to 
MFC variability are also analysed following Part I. The 
former is related to a change in atmospheric moisture con-
tent while the second corresponds to a change in moisture 
transport contributed by changes in atmospheric circulation. 

Overall, dynamics is the dominant contributor for each EOT. 
This means that Rx5d is mostly associated with a change in 
the monsoon dynamics, with stronger winds bringing more 
moisture over land. However, for the Yangtze river modes 
(EOTs 2 and 4) thermodynamics enhances the dynamical 
part. This contribution is associated with sea surface tem-
peratures (Fig. 7), with both EOT2 and 4 presenting very 
similar seasonal regression patterns. They both show a 
warming over the South China Sea region (significant pat-
tern in the figure), suggesting that enhanced evaporation is 
feeding the thermodynamic component of the MFC. The 
enhanced moisture availability over sea is then brought over 
land and increases precipitation. Again, all these features 
are also found in observations (Part I). The models seem 
to be able to reproduce the observed partitioning between 
dynamical and thermodynamical contributions to the MFC.

Results from Part I indicated that EOT interannual varia-
bility can be related to the interannual summer precipitation, 
and hence to the dynamics of the mean JJA precipitation. 
Following this finding, a regression analysis is conducted on 
key seasonal mean atmospheric variables (Fig. 8).

EOT1 is characterized by a low level anticyclonic cir-
culation in the east of China, leading to enhanced moisture 
transport from the south toward North China (corresponding 
to the centre of this mode). This circulation anomaly may 
be related to the northward displacement of the East Asian 
upper-tropospheric jet stream, shown by a dipole anomaly of 
the 200 hPa wind (Fig. 8). This results in a mid-tropospheric 

Fig. 5  a Distribution of EOT timings (from June 1st to August 31st) 
for each individual model (light thin lines), multi-model ensemble 
(dark thick lines with circle symbols) and OBS (dark thick lines with 
diamond symbols). Ensemble results are obtained by pooling together 

results from each individual model and then computing the timing 
distribution. The mean, 25–75% and 10–90% intervals are shown by 
the symbols, solid lines and dashed lines respectively. b and c: As (a) 
but for higher (top) and lower (bottom) resolution models
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positive geopotential anomaly and a lower sea level pres-
sure over land, i.e. an enhanced monsoon circulation. The 
increased sea-land pressure gradient explains the increased 
southerly wind anomaly along China’s East coast [as shown 
by Lin (2013)]. These features are in agreement with the 
observed signal (Part I).

Yangtze river modes (EOTs 2–4) are associated with 
increased sea level pressure over the West Pacific region, 
leading to enhanced moisture transport onshore. This 
westward extension of the West-North Pacific subtropi-
cal high is weaker for EOT2 than for EOT4, explaining 
the difference in latitudes of each EOT (EOT2 being 
confined more to the south of the Yangtze river while 
EOT4 extends to its north). This echos previous stud-
ies showing that extreme precipitation events over the 
Yangtze River Basin were associated with air–sea heat 
fluxes and moisture transport (e.g. Gao and Xie 2014; 
Gao et al. 2016). Part I indicated that these modes were 
also related to a decaying phase of winter El-Nino and 
warmer Indian Ocean SST. Regression patterns in the 
models (Fig. 7) show similar positive anomalies over the 
Indian Ocean and South China Sea. Finally, both modes 

are also associated with an increased (reduced) East Asian 
jet stream north (south) of their base point, corresponding 
to enhanced convection.

The Southern mode (EOT3) is associated with a low-
level dynamic anomaly over the South China Sea, with 
enhanced moisture transport from the sea converging to 
the land. In the models, the SST have a La-Nina like pat-
tern. Although a warmer West Pacific and Indian Ocean is 
also observed in the reanalysis (Part I), the tropical eastern 
Pacific signal is opposite to the observed. This inconsist-
ency may reflect the large variability in EOT3 intensity 
produced by models (Fig. 4) and highlights the difficulty 
that models have correctly simulating precipitation in 
southern China (Chen and Frauenfeld 2014).

The previous results indicate an overall good perfor-
mances from the CMIP6 models ensemble mean to repro-
duce the dynamics associated with the four main modes 
of variability of extreme precipitation over Eastern China. 
Thus, this group of models is not only able to simulate 
each EOT pattern and intensity but also capture the right 
dynamical processes associated to the variability of each 
EOT. Individual model performance is more variable, as 

Fig. 6  Regression patterns of total moisture flux convergence (MFC, 
mm) coinciding to the time when Rx5d occurs, its thermodynamic 
(Th) and dynamical (Dyn) contributions to normalized EOT signals. 

The base point of each EOT is shown by the orange circles. Dotted 
area indicates significant results at 95% confidence level
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shown in Fig. 9 [and also see Xu et al (2021)]. The ensem-
ble mean tends to be better than individual models espe-
cially in terms of correlation, highlighting the importance 
of using multi-model ensembles for higher confidence in 
results. Still, ensemble mean correlations may seem lower 
than expected. This is because regression patterns are 
used here instead of direct dynamical fields or compos-
ites. Regression analysis usually leads to smoother spatial 
signals, with the multi-model mean smoothing even more 
these patterns. Thus it is more difficult to obtain strong 
correlations with observation.

4  Changes in RX5d risks

Having validated the models, the change in risk is now 
investigated (see Methodology section for more details). 
Changes in the distribution of each EOT’s Rx5d inten-
sity are displayed in Fig. 10 and the Risk Ratios (RR) 
associated with the most extreme cases (95th percentile 
of the reference period or a 1-in-20-year event) are pro-
vided in Table 2. For all cases, models indicate a weak 
change between the 1961-1980 and 1991–2010 periods, 
although all EOTs, except the second one, have a positive 

RR. The shift becomes more apparent with higher warm-
ing levels. Almost all RRs are significantly positive, rang-
ing from about 1.5 to 2.5 (for the + 1.5 ◦ C and + 3 ◦ C 
targets respectively), meaning that the risk of reaching 
the 95% values could be 50–150% larger than during the 
1961–1980 period. Changes in mean seasonal precipita-
tion distribution, computed at the base point of each EOT 
(Fig.  11), indicate overall weaker and more uncertain 
signals. Especially, during the historical period the sea-
sonal RR is below 1 for each EOT location, indicating 
reduced seasonal-mean rainfall, different from the gener-
ally increased risk for 5-day extremes. This may be related 
to a change in dynamical properties during the mid-90s, as 
shown by Wu et al (2020). In the projections, extreme pre-
cipitation modes emerge more clearly and strongly from 
the inter-model variability than does mean precipitation, 
in agreement with previous studies (e.g. Westra et al 2014; 
Freychet et al. 2015, 2016; Burke and Stott 2017; Dong 
et al. 2020).

The above results strongly suggest an intensification 
of EOTs with future global warming, although the cur-
rent signal is still weak. This means that China is likely 
to experience enhanced risks of 5-day extreme precipita-
tion in the upcoming decades, with increased risks of all 

Fig. 7  As Fig. 6 but for the JJA seasonal mean sea surface temperature regression. Dotted area indicates significant results at 95% confidence 
level. Also note that the region is different from Fig. 6 to allow for a broader view of SST patterns
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associated consequences [for example flooding, damage to 
infrastructures and crops (Zhang and Zhou 2020).

Note that these projections are scenario-dependant 
despite the fact that they correspond to specific warm-
ing targets. Indeed, results are here related to the SSP370 
pathway and can be influenced by its projected changes in 
aerosol emissions. For example Wang et al (2021) showed 
that some scenarios adopted for the CMIP6 simulation 
underestimated the recent changes in aerosols over East 
Asia. A complete analysis of the impact of aerosol pro-
jection in the different SSP pathways would need to be 
conducted to answer this specific aspect.

5  Discussion and concluding remarks

Following the work of Tian et al. (2021), we conducted an 
evaluation analysis for the latest version of the Coupled 
Model Intercomparison Project, CMIP6. These results are 
complementary to Zhu et al (2020) who investigated CMIP6 
performances for different extreme precipitation indices.

CMIP6 multi-model ensemble mean results are consist-
ent with the observation. The ensemble is able to reproduce 
the patterns of the main modes of interannual variability of 
extreme precipitation, along with a good representation of 
seasonal timing and magnitude. It can also reproduce most 
of the main features of the circulations associated with these 
modes. Individual model performances are also overall in 
agreement with observation, although there are some dis-
crepancies especially for the dynamical patterns. We also 

Fig. 8  As Fig.  7 but for seasonal-atmospheric variables. Left: Sea 
level pressure (shading, Pa) and 850 hPa horizontal wind (vectors). 
Right: 500 hPa Geopototential height (contours, m) and 200 hPa 
zonal wind (shading, m/s). For geopotential height, thick coloured 

contours indicate a signal above the 95% confidence interval. For 
other variables, only signals above the 95% confidence interval are 
shown
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noticed that models tend to over-estimate the variability of 
North and South china modes, corresponding to a wider dis-
tribution and larger intensity compared to observation. Thus, 
results for these two regions may be slightly less reliable.

The resolution of the models is not systematically linked 
to their performances. We showed that using multi-member 
or multi-model ensembles is more beneficial than increas-
ing the horizontal resolution. CMIP6 is found to be overall 
less reliable for South China region precipitation (EOT3), 
consistent with Tang et al. (2021) who highlighted similar 
results using a different methodology, although other studies 
also indicated a slight improvement in model performances 
from CMIP5 to CMIP6 (e.g. Dong and Dong 2021; Xu et al 
2021). We believe that even high resolution climate mod-
els are still too coarse to correctly represent convection and 
local processes impacting precipitation (the highest resolu-
tion models are around 100 km scale, which is far too coarse 

to resolve convection). A note of caution though: Our con-
clusion does not mean that all models are equal or that the 
number of members if the only important factor. Horizontal 
resolution is only one aspect considered in our study. Models 
could also be grouped by their physical schemes (or other 
core schemes). This could highlight some systematic dif-
ferences between model families, but it is beyond the scope 
of this study. For example Chen et al. (2021) have shown 
a weakened dependency between horizontal resolution and 
model performances between CMIP5 and CMIP6 (for pre-
cipitation over East Asia and West North Pacific), indicating 
that improved physical framework and parameterization may 
play a major role.

After validating the model performances, we conducted a 
risk change analysis for both the historical period and future 
global warming targets. Although the risk change is small 
and not always clear during the historical period, which is in 

Fig. 9  Taylor diagram of individual model (circles) and ensemble 
mean (diamond symbols) performance in reproducing regression 
patterns associated with each EOT. Colors correspond to different 

dynamical fields (caption in the center of the figure) and summer total 
precipitation (TP). The black star, in each plot, shows the reference 
(ERA5)



 N. Freychet et al.

1 3

opposition to the risk change in seasonal mean precipitation, 
the future projections indicate a clear increase in the risk of 
reaching the most extreme values for each EOT i.e. overall 
intensified extreme precipitation, consistent with findings 

from Xu et al (2021). These results highlight the vulner-
ability of Eastern China to disasters associated with heavy 
precipitation.

Fig. 10  Generalized Extreme 
Value distribution fit to EOT 
base region intensity distri-
butions (mm/5-day) during 
five periods: 1961–1980 and 
1991–2010 historical periods 
(dark and light blue respec-
tively), + 1.5, + 2 and + 3 ◦ C 
projection periods based on the 
SSP370 scenario (orange, red 
and dark red lines). The black 
vertical lines show the position 
of the 95th percentile from the 
1961–1990 period

Fig. 11  Same as Fig. 10 but for 
the total JJA seasonal precipita-
tion at EOT base region (mm) 
using a normal distribution
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Table 1  CMIP6 individual models used for the study along with their number of members

The model numbering is used to identify individual models in some figures. The mean horizontal resolution (Mean Res.) is indicated in degrees

Model nb. Ens. size Mean res. Name Institution

1 1 1.1 TaiESM1 Academia Sinica - RCEC (Taiwan)
2 3 1.1 BCC-CSM2-MR Beijing Climate Center (China)
3 3 2.8 BCC-ESM1 Beijing Climate Center (China)
4 1 1.1 FGOALS-f3-L Chinese Academy of Sciences (China)
5 1 2.1 FGOALS-g3 Chinese Academy of Sciences (China)
6 1 2.8 CanESM5 Canadian Center for Cl. Mod. and An. (Canada)
7 8 1.4 CNRM-CM6-1 Centre National de Recherche Meteorologiques (France)
8 3 1.4 CNRM-ESM2-1 Centre National de Recherche Meteorologiques (France)
9 1 1.6 ACCESS-ESM1-5 Commonwealth Sc. and Indust. Res. Org. (Australia)
10 1 1.6 ACCESS-CM2 Commonwealth Sc. and Indust. Res. Org. (Australia)
11 1 1.9 MPI-ESM-1-2-HAM ETH (Switzerland)
12 1 1.8 INM-CM4-8 Institute for Numerical Mathematics (Russia)
13 1 1.8 INM-CM5-0 Institute for Numerical Mathematics (Russia)
14 9 1.9 IPSL-CM6A-LR Institut Pierre Simon Laplace (France)
15 1 1.4 MIROC6 JAMSTEC (Japan)
16 4 1.6 HadGEM3-GC31-LL Met Office Hadley Center (UK)
17 2 0.7 HadGEM3-GC31-MM Met Office Hadley Center (UK)
18 16 1.6 UKESM1-0-LL Met Office Hadley Center (UK)
19 1 0.9 MPI-ESM1-2-HR Max Planck Institute for Meteo. (Germany)
20 1 1.9 MPI-ESM1-2-LR Max Planck Institute for Meteo. (Germany)
21 1 1.1 MRI-ESM2-0 Meteo. Research Institute (Japan)
22 9 1.1 CESM2 NCAR - Climate and Global Dyn. Lab. (USA)
23 1 2.2 CESM2-FV2 NCAR - Climate and Global Dyn. Lab. (USA)
24 3 1.1 CESM2-WACCM NCAR - Climate and Global Dyn. Lab. (USA)
25 1 2.2 CESM2-WACCM-FV2 NCAR - Climate and Global Dyn. Lab. (USA)
26 1 2.2 NorCPM1 CICERO (Norway)
27 1 2.2 NorESM2-LM CICERO (Norway)
28 1 1.1 NorESM2-MM CICERO (Norway)
29 1 1.1 GFDL-CM4 NOAA - Geoph. Fluid Dyn. Lab. (USA)
30 1 1.1 GFDL-ESM4 NOAA - Geoph. Fluid Dyn. Lab. (USA)
31 1 1.9 NESM3 Nanjing University of Info. Sc. and Tech. (China)
32 1 1.1 SAM0-UNICON Seoul National University (Korea)

Table 2  Risk Ratio (RR) associated with the change in extreme precipitation modes (EOTs) and seasonal mean precipitation

Numbers between brackets correspond to the 5–95% confidence interval. Bold values highlight RR significantly different from 1

Target period EOT base region intensity JJA mean at the location of each EOT

1 2 3 4 1 2 3 4

1991–2010 �.22

(1.17 − 1.35)

�.92

(0.87 − 0.96)

�.12

(1.09 − 1.17)

�.24

(1.12 − 1.30)

0.93

(0.82 − 1.01)

�.60

(0.56 − 0.64)

�.85

(0.81 − 0.88)

�.90

(0.84 − 0.96)

+ 1.5 ◦C �.44

(1.24 − 1.61)

�.26

(0.88 − 1.42)

�.55

(1.23 − 1.81)

�.52

(1.22 − 1.80)

1.25

(1.00 − 1.63)

1.26

(0.87 − 1.60)

�.81

(1.40 − 2.26)

1.10

(0.86 − 1.32)

+ 2.0 ◦C �.45

(1.09 − 1.71)

�.71

(1.29 − 2.00)

�.85

(1.53 − 2.19)

�.95

(1.65 − 2.34)

�.40

(1.01 − 1.73)

�.47

(1.15 − 1.87)

�.94

(1.48 − 2.39)

�.13

(0.88 − 1.39)

+ 3.0 ◦C �.23

(1.60 − 2.62)

�.53

(2.11 − 3.01)

�.42

(2.06 − 2.76)

�.35

(1.94 − 2.76)

�.56

(1.85 − 3.13)

�.72

(2.21 − 3.19)

�.68

(2.30 − 3.20)

�.55

(1.23 − 1.93)
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In this study we found that using the CMIP6 ensemble 
to analyse changes in extreme precipitation over Eastern 
China is reliable. However we stressed that although the 
ensemble mean shows good performance, individual model 
results vary. Using large ensembles remains a solid method 
to improve confidence and enables reliable results to be 
extracted from noisy climate change signals even in the case 
of extreme precipitation. Also, this study focused on sea-
sonal precipitation. Thus, the question on whether increasing 
resolution improves the fidelity of shorter time-scale heavy 
precipitation in the models remains open.
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