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ABSTRACT

Large scale and persistent heat waves affecting Central-Eastern China are in-

vestigated in 40 different simulations of sea surface temperature driven global

atmospheric models. The different models are compared with results from

reanalysis and ground station datasets. It is found that the dynamics of heat

wave events is well reproduced by the models. However, they tend to pro-

duce too persistent heat wave events (lasting more than 20 days) and several

hypothesis were tested to explain this bias. The daily variability of the tem-

peratures or the seasonal signal did not explain the persistence. However,

interannual variability of the temperatures in the models, and especially the

sharp transition in the mid-90s, has a large impact on the duration of heat

waves. A filtering method was applied to select the models closest to the ob-

servations in terms of events persistence. The selected models do not show

significant difference with the other models for the long term trends. Thus,

the bias on the duration of the events do not impact the reliability of the model

positive trends, mainly controlled by the changes in mean temperatures.
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1. Introduction29

Large scale and persistent heat waves (HW) over East China have a large environmental and30

socio-economic impact (e.g. Luber and McGeehin 2008; Wang et al. 2015) and have been the31

focus of many studies (see for example Perkins (2015) and Lu and Chen (2016) for a review).32

During the past few decades, the frequency of these events have been found to increase (Wei and33

Chen 2011; Wang and Fu 2013; Ren et al. 2005, 2016; Zhou and Wang 2016). But this trend is not34

always consistent and can vary in some regions (Yan et al. 2011b; Ding and Qian 2011; Dong and35

Huang 2015). Freychet et al. (2017) showed that, for large scale heat waves, this trend is mainly36

due to increase in the mean temperature. This study also showed that HW are related to strong37

mid-troposphere positive anomaly and to an enhanced heat and moisture transport in the lower38

troposphere. On the other hand, Luo and Lau (2017) indicated dry conditions associated with HW39

over Southern China. Other works have also pointed out the role of the reduction in the snow40

cover over the western Tibetan Plateau (e.g. Wu et al. 2012; Sun et al. 2014) and of the Eurasian41

teleconnection pattern (Wang et al. 2016a). Thus, different processes are involved in the formation42

and magnitude of the HW events.43

Adaptation to such events for the next few decades is important and was investigated by the44

Working group II of the IPCC5 Fifth Assessment (IPCC 2014, Kripalani et al. (2007)). Many45

studies, relying on global climate model projections such as the CMIP5 (Coupled Model Inter-46

comparison Project Phase 5) ensemble, indicate an increase in HW events for the future decades47

in terms of frequency, intensity and duration (e.g. Guo et al. 2017). As many different models are48

used for such ensemble experiments, the confidence on these projections can be questioned, espe-49

cially for extreme or rare events (Freychet et al. 2015, 2016). The main objective of this study is to50

conduct an evaluation of the AMIP models for persistent and large scale heat waves over Central-51
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Eastern China (CEC) and use these evaluated models to estimate the changing risk of such events.52

The region is chosen to be close to Lin et al. (2015) definition. It is heavily populated and extreme53

temperature events can impact a large population. Urbanisation is also important and can locally54

impact the temperatures. However, this aspect is not included in the current global climate models55

and should not change the results of this study. It must also be noted that the results presented in56

this study are specific to the definition of the region. Other area could lead to different findings57

depending on the dynamics (e.g. Wang et al. 2016b). Even if using realistic SST forcing, AMIP58

simulations are not reanalyses, thus it is not expected that they can reproduce the same heat waves59

at the same dates. In this study only statistical approaches are considered, different from a case60

analysis such as Luo and Lau (2017) for instance.61

Our focus is on the atmospheric component of the climate models and the evaluation is based62

on two different reference datasets, defined in Section 2. Another ensemble of 15 members of the63

Met Office HadGEM3-GA6-N216 model (Walters et al. 2017) is also used to examine the intra-64

variability of the models. The study investigates if the AMIP ensemble is consistent in terms of65

dynamics (Section 3) and if the models can reproduce HW signals in the observational datasets66

(Section 4). A major question is to verify that the models are consitent in terms of risk change.67

This point is addressed in section 5, before concluding in Section 6.68

2. Data and heat waves definition69

a. Data70

1) REANALYSIS AND OBSERVATIONS71

Maximum and minimum temperatures (Tmax and Tmin) and atmospheric circulation variables72

from ERA Interim reanalysis (ERAI, Dee et al. (2011)) are used as a reference for this study. Daily73
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data are extracted at 0.75 degree resolution, and the 1979-2010 period is used. Homogenized74

ground station observations of temperature (OBS, Li and Yan (2009)) are also used. OBS are first75

regridded on the ERAI grid (shown in Fig.1a-b for Tmax) by averaging, for each grid point, the76

corresponding available data from OBS. If no OBS data is available for a grid point, then it is77

masked.78

A significant bias exists between ERAI and OBS (not show). ERAI is too cold, especially over79

the central and Southern China. Part of this bias may be related to the urban effect that can impact80

locally the ground station temperatures (Yan et al. 2011a). Another part of this bias may be due81

to elevation effect, that is directly recorded in OBS but could be missing in ERAI due to the82

resolution. A modification is applied to OBS so that it is more consistent with ERAI. To do so, a83

linear temperature gradient coefficient (CZ = 0.6K/100m) is combined with the difference between84

the elevation of each station (ZOBS) and the elevation of the co-located ERAI grid point (ZERAI)85

to obtain an adjustement term (dT ) equivalent to: dT = CZ × (ZOBS −ZERAI). This term is then86

applied to the temperatures at the station. The station observations are then regridded on the ERAI87

grid. Also note that the choice of a fixed coefficient CZ is arbitrary and can vary significantly88

according to the land type (Li et al. 2013). Thus the adjustment method employed here should not89

be considered as perfect.90

After adjusting the elevation effect, the differences between ERAI and OBS are reduced (Fig.1c)91

compared to the raw data differences (not shown). This indicates that part of the differences92

between reanalysis and observation are due to the fact they represent temperatures at different93

elevations, stations being more often located in the valley while reanalysis grid point correspond94

to the mean elevation of the region. Other processes impacting temperatures at a very local scale95

such as aerosols or urban effect (e.g. Gong and Wang 2002; Heisler and Brazel 2010; Yan et al.96

2011a) could explain the remaining differences. Results for Tmin show lower biases compared to97
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Tmax, and the elevation correction also reduces the differences between ERAI and OBS (Fig.1f).98

Hereafter, OBS will refer to the regridded ground station observation, after elevation correction.99

Moreover, the term “observations”will be used to include both ERAI and OBS, when comparing100

the results with the models.101

2) MODEL DATA102

Daily data from 1979 to 2008 from an ensemble of 40 members of the AMIP multi-model103

ensemble (AMIP) is investigated. As some models have several members, the total of independent104

models is 21 (Table ??). AMIP models correspond to the same CMIP5 models but are forced by105

prescribed sea surface temperature (SST) during the historical period, removing uncertainties due106

to ocean models. The study does not investigate individual performance of each model. However,107

for each diagnostic performed, the list of the five models with the lowest and the highest scores is108

given in Table ??. The user may refer to this table to see individual model performances.109

Another ensemble of 15 members from the Met Office HadGEM3-GA6-N216 atmospheric110

model is used (N216). It also follows an AMIP-like experiment, i.e. forced by prescribed SST111

during the historical period, and data are extracted for the same period. The N216 ensemble is112

mainly used to estimate the internal variability and uncertainties. It runs from 1960 to 2013, but113

the same period (1979-2008) as the AMIP is used for analysis.114

b. Heat waves definition and computation of the composites115

1) HEAT WAVES DEFINITION116

There are many ways to define HW events and trends can be different depending on the index117

definition (You et al. 2016). Here we focus on large scale and persistent events, and the definition118

of HW used in the study follows that of Freychet et al. (2017). Daily Tmax and Tmin are both119
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averaged over the Central-Eastern China (CEC) region (105E-125E, 30N-40N), and the 90th per-120

centile is computed for each temperature, using the extended summer period (May-September) of121

each year. A warm day is defined as when both Tmax and Tmin are above their respective 90%122

values on the same calendar day. A HW event is defined when at least 5 consecutive days are123

warm days. Note that this methodology is applied independently to each dataset (ERAI, OBS, and124

each model member) to define their own 90th percentile removing mean temperature bias.125

As the main objective of this study is to focus on the most threatening events for society, HW126

highlights the warmest events in an absolute way. As the temperatures are warmer during mid127

July, it is expected that most of the HW events will be identified during this period too. Thus,128

HW events can be seen as a phenomenon that amplifies the seasonal transition and increases the129

temperature during the warmest period. It also implies that HW events are related to the seasonal130

transition. This point will be further discussed in the Section 4.131

2) COMPOSITES132

To study the atmospheric circulation during the HW, a composite method is applied to an atmo-133

spheric variable labelled X. When a day d is identified as part of a HW event, the corresponding134

variable Xd at time d is extracted, and the climatology (as a 5-days running mean) of X at the same135

calendar day (Xd−clim) is removed. To remove any long term trend and variability and to focus on136

anomalies due to the HW, the difference between the annual mean around the time d (Xd−ann) and137

the mean 1979-2008 climatology of X (Xclim) is also removed. Thus, only the anomaly (Xd) due138

to the HW remains.139

Xd = Xd −Xd−clim − (Xd−ann −Xclim) (1)

The composite of X corresponds to the averaging of the anomalies from all the HW days during140

the studied period (see Appendix for a schematic view).141
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3. Heat Wave Dynamics142

It is first important to verify if the model can reproduce the observed dynamics of events. For143

that, a composite analysis is used, as described in Section 2.144

The dynamical processes correlated with persistent HW events have been described in details in145

Freychet et al. (2017). Here we verify that the models can reproduce the composite ERAI signals.146

The ensemble mean of the AMIP models can reproduce the observed dynamical patterns (Fig.2).147

A mid-troposphere high pressure (Z500) along with a subsidence anomaly (W500) and northward148

shift of the subtropical jet (U200) leads to an increase in surface solar radiation (SSR) and favour149

higher Tmax. The specific humidity (S.Hum.) is also higher than usual during these events and is150

important to reduce the night time cooling and keep Tmin higher. Finally, the low level circulation151

(SLP) pattern corresponds to the development of a meridional cell anomaly with an upward motion152

over the the North-East of the CEC region. This anomaly has been hypothesised to lead to return153

wind from the North and to increase the heat convergence over CEC during the HW (Freychet154

et al. 2017).155

The individual member performances are tested (Fig.3a,b). Most of the models are close to the156

reference (ERAI) in terms of correlation (between 0.7 and 0.9). The scatter of the N216 members,157

especially for the SLP, indicates a high intra-model variability. Poor results may be due to a too158

strong control of the seasonal transition in some members instead of an anomaly of the circulation159

(i.e. HW events may be triggered by an overall large increase in temperature during the peak of the160

summer). The ensemble mean is overall consistent with ERAI in terms of patterns (correlation)161

but tend to have a weaker signal due to the ensemble averaging. The dynamical signal is tested162

furthermore with a lag-composite analysis (Freychet et al. 2017), from 10 days before to 10 days163

after the HW events. The anomalies are averaged over the [105E-125E, 30N-40N] region for Z500,164
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and over the [115E-140E, 40N-50N] region for the SLP. The evolutions of these anomalies are165

compared with ERAI results and displayed in Fig.3c,d. The ensemble mean is able to reproduce166

the signal with a good correlation (0.8 for Z500 and 0.9 for SLP), but individual results are more167

scattered. Interestingly, the ensemble is more consistent for the SLP, indicating that the low-level168

dynamical response in the models is a robust result. Other variables are also tested (surface solar169

radiation, 500hPa vertical wind and 850hPa specific humidity, not shown). Results are overall170

similar to findings in Fig.3: the ensemble mean is consistent with ERAI, but individual models171

can have weaker performances.172

Overall the AMIP ensemble is able to reproduce the main spatial and temporal evolutions of the173

dynamical patterns of HW events, even if some individual members are less consistent.174

4. Representation of heat waves in the AMIP models175

This section investigates if models can reproduce HW events compared to observations, in terms176

of number and duration during the historical period (Section a and b). Following this, the possi-177

ble reasons for the model differences are explored. Finally, Section d discusses the interannual178

variability of the events.179

a. Estimation of heat waves events in models180

The difference between the reanalysis and observations shows that the estimated number of181

observed heat waves has considerable dataset uncertainty (Fig.4a). For example, Fig.4 of Luo and182

Lau (2017) shows another example of different heat wave number and intensity estimates (over183

South China) based on different datasets (reanalysis or weather station). High variability is also184

seen between the different models or even between different simulations of a same model. Indeed,185

when looking at the different members of the N216 ensemble, the number of days may vary from186
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30 to 60, and the standard deviation of N216 ensemble is about the same order as the observed187

uncertainty. Thus, the statistics on these events are very sensitive to the sampling processes and188

both modelled or observed events must be considered within a margin of error. The fact that these189

events are rare and the period is limited suggests that part of the difference may be simply due to190

the variability. Considering, the actual number of heat waves per year (Fig.4b), results are more191

consistent between observations but the AMIP models still tend to produce too many events and192

have a large scatter.193

To verify that the differences between models and observations are not an artefact due to an194

incorrect seasonal signal, the seasonal climatology is corrected in each model and OBS, using195

the seasonal climatology of ERAI. To do so, the 31-day smoothed climatology is removed from196

the simulated temperatures (or OBS), and the 31-day smoothed climatology from ERAI is added.197

Then heat waves are computed using the corrected data (Fig.4c and d). The total number of heat198

wave days in the AMIP ensemble is not improved by such methodology. Interestingly, the number199

of events in OBS is enhanced, increasing the uncertainties in the observations. The seasonal200

signal may influence the production of heat waves, and with the same seasonal climatology the201

reanalysis or ground stations have a different estimation of the number of events. Consequently,202

the uncertainties on the true estimate is larger and models are more consistent with observations.203

As correcting the seasonal climatology does not improve the results, the actual temperatures are204

used from hereon.205

b. Event Persistence206

To investigate in more detail the reasons for the overestimation of the number of heat wave days,207

the persistence of the warm events is displayed in Fig.5 (a warm event being a combination of208

both Tmin and Tmax above their respective threshold during a same day). As defined before, an209
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event is defined as a heat wave if it lasts at least 5 days, but in Fig.5 shorter events (1 to 4 days)210

are also plotted to obtain a full spectrum of the warm events persistence. For each models, results211

are displayed as a percentage relative to the total number of warm days in this same model (or212

observation). For instance, if a model has 12 warm events lasting for 2 days, and in total it has 300213

days of warm events (all length grouped), then it would have 8% of events with a persistence of214

2 days. The mean persistence of the events of more than 5 days is also displayed for OBS, ERAI215

each AMIP and N216 members.216

ERAI is, overall, consistent with the station data (Fig.5), though there are more short events in217

ERAI (4 days), and less long lasting heat waves than in the gridded station observations. The max-218

imum heatwave length in ERAI is 9 days, while in OBS it can reach 12 days, and the percentage219

of long lasting events is larger in OBS than in ERAI. However, this differences are relatively small220

compared to the differences with the models, and could be due to local effects (e.g. urban effect)221

not resolved in ERAI. Many AMIP members produce very persistent events that can last for 20222

days or more. The mean duration is found to be 6 days in ERAI and 8 days in OBS, and ranges223

from 5 to 11 days in the models. Thus the mean duration may be considered as realistic in some224

models, but specific longer events could be problematic and some models are outside the range of225

the observational uncertainties. Possible reasons for such behaviour are explored below.226

c. Hypothesis for the over-persistent heat waves227

Three main hypothesis are investigated in this section: the variability of the models, the vari-228

ability of the temperatures in the models, and the influence of the seasonal signal.229
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1) INTERNAL VARIABILITY AND OBSERVATION ERROR230

Even if long persistent HW events (more than 10 day events) are observed in many simulations,231

considerable internal variability exists in the models, illustrated in Fig.6 for the N216 simulations.232

Some members can simulate a reasonable ratio of long persistent events whereas other simulations233

produce mostly long lasting events. These differences are also observed in the AMIP ensemble234

(not shown). Thus, the persistence of the events cannot be attributed to a systematic bias of a235

model, but may be linked to the internal variability of the model.236

A crude estimation of the realistic range of the maximum persistence is made, based on the237

observations mean (µobs=10.5 days) and differences (σobs=3 days) and on the N216 standard devi-238

ation (σN216=5.1 days). Considering that the uncertainties are simply independent and cumulative,239

the maximum realistic persistence could be considered as:240

µobs +

√

(σ2
obs +

σ2
N216

N
) (2)

with N the number of members (for example 15 for the N216 ensemble mean). The result would241

be 14 days for the N216 ensemble mean and 16.5 days for a single member. It means that an event242

persistence of 16.5 days in a single member can be considered as reasonable, given the range243

of the intra-model variability and observation uncertainties. This explains part of the differences244

between the models and the observation, but not the most persistent events. It is still important to245

understand if a specific factor controls the variability of the persistence, or could be attributed to246

chaos. Thus, other factors are investigated below.247

2) TEMPERATURE VARIABILITY248

The daily variability of the temperatures is an important aspect that can explain over-persistent249

warm events. Indeed, if a model has a systematic too low daily variability of the temperature (thus250
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with temperatures more stable from one day to another), it may lead to more stable temperatures251

and thus longer events. This hypothesis is investigated in Fig.7 (a,b). The variability is computed252

by removing the 3-days running mean and taking the standard deviation of the anomaly (for Tmin253

and Tmax separately). No clear relationship can be found between the variability of Tmin and the254

HW persistence. But many models producing long HW events (red circles) tend to correspond255

to weaker variability of Tmax (with an overall correlation of -0.61). Thus, a too weak daily256

variability of the maximum temperature in the models could lead to more systematic long HW257

events. However, this signal is not observed for N216, and the models with a similar (or lower)258

observations variability have too many long heat waves. Thus the biases cannot be explained by259

variability alone, though it has an impact on the duration of the events in the models.260

3) EFFECT OF THE SEASONAL CYCLE261

The amplitude of the summer range (i.e. the difference between the coldest and warmest period262

of the summer based on the 5-day smoothed climatology) could also impact the HW persistence.263

Too large a summer range would lead to systematically too persistent heat waves, as the warmest264

period would be above the threshold used to detect HW. This hypothesis is tested in Fig.7 (c,d).265

The summer ranges for Tmax and Tmin correspond to the difference between their highest and266

their lowest magnitudes respectively (based on the daily climatology smoothed by a 5 days running267

mean). Again, no clear relationship is found between this signal and the persistence of HW,268

either in terms of inter- (AMIP ensemble) or intra-model (N216 ensemble) variability. However,269

it is noticeable that all the members (AMIP and N216) have a larger seasonal range for Tmax,270

compared to ERAI.271

As the simulated summer range is generally larger than observations, persistence is analysed272

after correcting the seasonal climatology as explained in Section 4. It is clear that even after273
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correcting the seasonal climatology, differences in the persistence (Fig.8a.) are still noticeable for274

both AMIP and N216.275

A last case is to consider heat waves events in terms of anomalies, by removing the seasonal276

climatology from the temperatures before computing HW events. This correspond to the method-277

ology described before to correct the climatology, except that the ERAI climatology is not added278

after removing the model climatology. In this case the events are independent from the seasonal279

signal. As expected, the events tend to be shorter (Fig.8b), because they are not amplified by the280

seasonal transition. There is a better agreement between EARI and OBS, but the models still tend281

to produce to many long lasting events.282

Errors in the seasonal cycle cannot on their own explain the persistence of simulated events.283

However, the influence of the seasonal signal in the models is larger than in OBS or ERAI. For284

the models, the persistence of high temperatures may be partly due to an anomalous high seasonal285

range rather than by circulation anomalies, or a combination of both. There are also large uncer-286

tainties associated with both intra-model variability and differences between observations. These287

results also indicate that statistics on HW events are highly dependent on the choice of the index288

(absolute or anomalies), in accordance with You et al. (2016).289

Next it will be investigated if the models can still reproduce the historical trends of the events290

despite their bias.291

d. Evolution and trend of the heat waves292

ERAI and OBS have a good agreement in terms of inter-annual evolution of HW events (Fig.9).293

They both have a clear decadal oscillation and an overall positive trend. Models tend to reproduce294

the positive trend, but the decadal oscillation is less clear (though it is still visible), especially for295

the N216 ensemble. A major transition occurs between the mid-90s and 2000, with a peak just296
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after 2000. In the observations this transition is also visible, but in the models it is particularly297

sharp.298

Fig.10 shows the same evolution but for long HW events only (more than 10 days). In the ob-299

servations, the two peaks (corresponding to the few long events in OBS) are concurrent with the300

higher phases of the decadal signal. This indicates that the persistence of the events can be influ-301

enced by the decadal variability of temperatures. In the models, the signal is mostly controlled by302

the mid-90s transition, with most of the long HW occurring after this transition. This is also visi-303

ble for the signal without running mean where the interannual variability is larger (Fig.10b). Two304

periods are clearly visible in the models (before 1995 and after 2000), with a transition between305

the two and a peak just after 2000. The influence of the interannual variations of the tempera-306

tures is tested furthermore. The HW events and their persistence are computed after removing the307

yearly summer mean temperatures from the signals without the seasonal climatology (as described308

in Section 3). Doing so, the persistence is reduced (not shown), though the impact is not as large309

as the seasonal signal. This indicates that the interannual variability of the temperatures can also310

influence the length of the HW events.311

Finally, it is noticeable that both models and observations indicate a steady increase in the num-312

ber of HW (days or events per year), even if models reproduce less clearly the observed decadal313

oscillations. This is not surprising given the ensemble averaging that tend to reduce the variabil-314

ity. When computing HW events after removing both the interannual summer means, the signal315

is more constant (Fig.10c) in the models. This clearly indicates that the trend in the models is316

mainly controlled by the trends in the mean temperatures, which is consistent with Freychet et al.317

(2017). An interesting difference between observations and models is the clear decadal oscillation318

still visible in ERAI and OBS but not in the models (though their signal tends to oscillate too). It319

may indicate again some missing chaos in the model ensemble due to averaging.320
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5. Risk and confidence in the models trends321

Fig.11a,b compares the AMIP ensemble probability distribution for the number of HW days or322

events between the first and the last decade (1980-1990 and 1998-2008 respectively) of the in-323

vestigated period. Both distributions shift to a higher number of days or events between the two324

periods, indicating an increased risk of HW days, but the ensemble spread is also large. Similar325

results are found for the N216 ensemble (Fig.11c,d). Interestingly, the most recent period (2009-326

2013) does not show a significant difference. Thus the major increase in the heat waves events327

occurred during the mid-90s transition. It may be due to a change in aerosols emission and trans-328

port during these years (and a high sensitivity of the models to these changes), but this hypothesis329

could be investigated in future work.330

In previous sections, it has been shown that the signals in the AMIP simulations is often biased,331

especially in terms of the length of the events they produce. Thus, the reliability of the trend332

of heat waves in the AMIP (and the long-term forecasts) can be questioned. An approach to333

improve the confidence of the ensemble (and its projection) is to filter the best models based on334

their consistency with observations and reanalysis results. In the following, a filtering method is335

applied, based on the statistics of heat wave events (number of events or days). Two sources of336

error are considered: the observational error (estimated from the difference between ERAI and337

OBS) and the internal variability of the models (estimated with the N216 ensemble spread). This338

gives a margin of uncertainties within which the differences between a model and the observations339

can be considered as reasonable.340

As the biases are observed on the number and the duration of HW events, two variables are341

considered to evaluate the models performance: the total number of heat wave days per years342

(HWd/y) and the ratio of days included in long heat waves (more than 10 days) compared to the343
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total number of heat wave days (HWLrat). The reference values and associated uncertainties are344

computed using both OBS and ERAI, using the following formula:345

µobs =
OBS+ERAI

2
(3)

346

σobs = |OBS−ERAI| (4)

with µobs the mean, σobs the error and || symbols denoting the absolute value. In a similar way,347

the mean of a model (µmod) is computed by averaging, if necessary, the results from each of its348

members. The model error is estimated from the N216 ensemble (σmod), as it has the largest349

number of members, and corresponds to the standard deviation of the N216 ensemble. This error350

is particularly important as it is common to have only one member for a model, and thus a large351

uncertainty comes from the sampling process. As shown before, different members may have very352

different results, and thus the model cannot be evaluated correctly with a single member. A model353

results termed good when its difference with the observation is lower than the total error, i.e.:354

Criteria : |µmod −µobs|6

√

σ2
obs +

σ2
mod

N
(5)

where N is the number of ensemble members. When several members are available for one355

model, only the ensemble mean is evaluated (and all members are considered retained or excluded356

based on the result on the ensemble mean). The criteria is verified for both variables (HWd/y357

and HWLrat) and a model is termed good if it meets both criterion. The linear trends of the358

models is displayed in Fig.12. Even if the selection criteria is sharp many models are considered359

as good. However, the ensemble of good models does not show a significant difference compared360

to the ensemble mean of other models. Both groups indicate a positive trend, either in terms361

of events (about 0.25 events per decade) or days (about 2 HW days per decade). These results362
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are consistent with ERAI and OBS, when considering the margin of error (ensemble scatter and363

difference between ERAI and OBS), especially in terms of HW events. The weaker trend in the364

observation may be related to a stronger decadal variability while the models have a more steady365

increase (Figure 9). Selecting only the best models does not significantly affect the results in this366

case, thus the results from the overall ensemble (in terms of trends) can be considered as reliable.367

6. Concluding remarks368

The representation of persistent large-scale heat waves over Central-Eastern China have been369

investigated in 40 AMIP members and compared with the results from ground stations and ERA370

Interim reanalysis. An ensemble of 15 members of the HadGEM3-A-N216 model was used to371

estimate the intra-model variability.372

It was found that models tend to overestimate the number of heat wave days during the historical373

period, mostly because the events are too persistent. In the observations and reanalysis, the length374

of the events reaches a maximum of 12 or 9 days respectively, while in the models it can be more375

than 20 days.376

Possible reasons to explain this bias were investigated: the magnitude of the summer range377

between the coldest and warmest temperatures, the climatology and the daily variability of the378

temperatures. None of these possible factors showed a significant relationship with the persistence379

of the heat waves, though it seems that the models are particularly sensitive to the seasonal signal.380

When investigating the decadal variability of the signals, it was found that most of the long heat381

waves occurs during the warmest periods. Thus, a possible explanation is that the heat wave signal382

in the models is more impacted by interannual to long term variability of the temperatures, while383

in the observations it is more sensitive to short term variations. It was also noticed that the large384

internal variability of the models could explain part of the long heat waves.385
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The circulation signal during heatwave events was verified with a composite analysis. The AMIP386

ensemble mean was consistent with reanalysis though individual members were less consistent.387

It was also verified that the composites of short heat waves (5-10 days) were consistent with the388

composites of all events, i.e. that the too persistent heat waves were not related to an incorrect389

dynamics. Finally, models were selected based on their heat wave length agreement with obser-390

vations taking account of internal variability and observational error. These filtered models had391

similar trends in the number of heat waves and heat wave days as the other members of the ensem-392

ble. Thus the biases on the persistence of HW events do not affect significantly the trends, the later393

being mainly controlled by the interannual variability of the temperature. Thus, if a model can re-394

produce the mean change in the temperatures, it is expected that it can also reproduce the trends395

of the heat waves. Other dynamical factors (such as the jet streams, the Circumglobal teleconnec-396

tions, the Western North Pacific High or the South Asia High) have been shown to influence the397

summer temperatures in China (e.g. Wang et al. 2013). We haven’t investigated these processes in398

this study, thus they should be considered in the future as possible factors impacting heat waves in399

the models and eventually leading to biases in the persistence of the events.400

Based on this study, the AMIP models were found reliable in terms of dynamics for the heat401

waves over Central-East China. Despite their tendencies to produce too persistent events, most of402

the AMIP members are able to reproduce the positive trends observed in both ground stations and403

reanalysis, and all results indicate an increase in the risk of such events during the past decades404

(from 4 events during the first decade to 8 events during the last decade). However, the long term405

trends in the models should be considered carefully due to some missing signals in the models406

(the decadal oscillation observed in ERAI and OBS). The mid-90s transition, especially clear in407

the models, should also be investigated in future work, as it raises the question of possible large408

scale impact of aerosols emissions. Finally, it is also noticeable that some uncertainties come409
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from the difference between observation and reanalysis. Larger datasets, such an ensemble of410

reanalysis, could be used to improve the estimation of these uncertainties.411

Using directly the raw temperature threshold is justified as it impacts human health. However412

the methodology used to define heat waves may lead to uncertain results. Indeed, the signal may413

result from a mix between the natural warming due to the seasonal transition and a warming due414

to weather type circulation anomaly. Thus the persistence of the event could be attributed to415

one or the other. Moreover, the use of a fixed threshold to identify the duration of an event can416

lead to sensitive statistics (as an event could be cut in too with one day in the middle just below417

the threshold for instance). Thus a final advise is that statistics on heat waves should always be418

carefully associated with a margin of error due to the methodology and definition, the data used419

and the sampling.420

Acknowledgments. This work and all contributors were supported by the UK-China Research421

and Innovation Partnership Fund through the Met Office Climate Science for Service Partnership422

(CSSP) China as part of the Newton Fund. The author(s) wish to acknowledge use of the Ferret423

program for analysis and graphics in this paper. Ferret is a product of NOAA’s Pacific Marine424

Environmental Laboratory.425

APPENDIX426

a. Computation of composites427

The composite of X at a day d (Xd) of a specific year (ann) is given by equation 1. The cor-428

responding daily climatology (Xd−clim) of the variable is first removed (Fig.A1). The difference429

between the annual mean of the year ann and the climatology (annual mean, Xclim) is also removed430

from the composite. This method removes any long term trend effect (for instance, an elevation431
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of the geopotential height due to a global temperature warming) and only highlight the differences432

due to short terms anomalies.433
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Fig. 1. Summer mean Tmax and Tmin (◦C) for ERAI, OBS (corrected by the difference of elevation511
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(ERAI-OBS). All datasets have been masked where no ground station data were available.513
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Fig. 2. Composite of the dynamics during the HW events from the AMIP ensemble mean (left)515

and ERAI (right). The variables displayed are: (a,d) specific humidity (S.Hum., shading,516

g.kg−1), maximum temperature (Tmax, red contours, ◦C), minimum temperature (Tmin,517

blue contours, ◦C ), (b,d) 500 hPa geopotential height (Z500, shading, m), 200 hPa zonal518

wind (U200, black contours, m.s−1), (c,f) sea level pressure (SLP, shading, hPa) and surface519

shortwaves radiation (SSR, red contours, W.m−2). The black box indicates the Central-520

Eastern China region. . . . . . . . . . . . . . . . . . . . . 29521

Fig. 3. Taylor diagrams for Z500 (a) and SLP (b) spatial patterns (using the 95E-155E, 20N-55N522

region), for each AMIP member (green circles) and N216 member (blue circles). The red523

circle indicates the AMIP ensemble mean, and the reference is ERAI. (c,d) are the same but524

for the lag-composites of Z500 and SLP (see text Section 3 for methodology). . . . . . 30525

Fig. 4. HW days (a,c) and HW events (b,d) per decade, for each members (empty circles) and526

ensemble mean for each model (full black circle). The last model on the right of each plot527

is the N216 ensemble. The horizontal solid black line is ERAI and the dashed black line is528

OBS. The grey shading between the two indicates observational uncertainty. (a,b) are results529

from the raw data while (c,d) are results obtained after correcting the seasonal climatology530

(see text for description). . . . . . . . . . . . . . . . . . . . 31531
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Fig. 5. Percentage of days (y axis) as a function of warm day persistence (x axis, number of days).532

AMIP and N216 members are represented by orange and blue density diagrams respectively.533

Red circles show ERAI results, and green circles are OBS. See text Section 4b for more534

details. The coloured tics on the top axis indicate the mean duration of HW events (more535

than 5 days) for ERAI (red), OBS (green), each member (short tics) and ensemble mean536

(long tics) of AMIP (orange) and N216 (blue). . . . . . . . . . . . . . . 32537

Fig. 6. Sum of all HW days (during the 1979-2008 period), grouped by climatological pentad, for538

each N216 members. Gray bars indicate the total number of days, red bars are the days539

corresponding to long lasting HW events (more than 10 days) and the black contour bars are540

the days corresponding to short HW events (5 to 10 days). On the top of the figures, results541

from ERAI and OBS are displayed on the left and the right respectively. . . . . . . . 33542

Fig. 7. Mean duration of HW events (days) for each AMIP model (ensemble mean of each model,543

black circles) and N216 member (grey circles), versus the daily variability (a,b) and the sum-544

mer range (c,d). The red circle and star indicates results from ERAI and OBS respectively.545

See text Section 4c for the definition of the summer range and daily variability. . . . . . 34546

Fig. 8. As Fig.5 but based on data after correcting (a) or removing (b) the seasonal climatology. . . 35547

Fig. 9. Evolution of the annual number of HW days (a), HW events (b) and warm days (c), with548

a 5-year running mean. Solid black and red lines are ERAI and OBS respectively, and the549

gray shading indicates uncertainty between the two. Light blue is the AMIP ensemble mean550

(line in the middle) and standard deviation. Dark blue checked is the N216 ensemble mean551

and standard deviation. . . . . . . . . . . . . . . . . . . . . 36552
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Fig. 10. (a) As Fig.9a but for the long HW events only (more than 10 days). (b) Long HW signal553

in N216 ensemble without the 5-years running mean smoothing. (c) As Fig.9a but for HW554

events computed after removing the interannual summer means from the temperatures (text555

Sections d). . . . . . . . . . . . . . . . . . . . . . . . 37556

Fig. 11. Probability density function of the number of heat wave days or events during the 1980-1990557

period (filled green bars) and the 1998-2008 period (grey bars), for AMIP (a,b) and N216558

(c,d). 2009-2013 is also added for the N216 results (black contours). . . . . . . . . 38559

Fig. 12. Linear trends (Y axis) of the numbers of heat waves days (a) and events (b) per decade560

for each AMIP model (X axis) model mean (circles) and standard deviation from multi-561

members models (black bars). The N216 ensemble is indicated as model number 22. Green562

(blue) colour indicates the models considered as good (bad) by the filtering method (see text563

Section 5), and the ensemble means (and dispersions) of the two groups are shown by the564

green and blue square (and black bars). ERAI and OBS are shown with white and black565

squares respectively. . . . . . . . . . . . . . . . . . . . . . 39566

Fig. A1. Schematic representation of a composite computation (see text Section 2 and Appendix).567

The solid black line is the daily time serie of a variable X , the solid red line is its daily568

climatology and the orange shading represents the difference between the two. The dashed569

black line represent the annual mean of X and the dashed red line is the annual climatology570

(and the difference is highlighted by the orange shading). . . . . . . . . . . . 40571
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FIG. 1. Summer mean Tmax and Tmin (◦C) for ERAI, OBS (corrected by the difference of elevation with

ERAI at each point) projected on ERAI grid and difference between the two datasets (ERAI-OBS). All datasets

have been masked where no ground station data were available. (a-c) show Tmax and (d-f) show Tmin.
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FIG. 2. Composite of the dynamics during the HW events from the AMIP ensemble mean (left) and ERAI

(right). The variables displayed are: (a,d) specific humidity (S.Hum., shading, g.kg−1), maximum temperature

(Tmax, red contours, ◦C), minimum temperature (Tmin, blue contours, ◦C ), (b,d) 500 hPa geopotential height

(Z500, shading, m), 200 hPa zonal wind (U200, black contours, m.s−1), (c,f) sea level pressure (SLP, shading,

hPa) and surface shortwaves radiation (SSR, red contours, W.m−2). The black box indicates the Central-Eastern

China region.
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FIG. 3. Taylor diagrams for Z500 (a) and SLP (b) spatial patterns (using the 95E-155E, 20N-55N region),

for each AMIP member (green circles) and N216 member (blue circles). The red circle indicates the AMIP

ensemble mean, and the reference is ERAI. (c,d) are the same but for the lag-composites of Z500 and SLP (see

text Section 3 for methodology).
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FIG. 4. HW days (a,c) and HW events (b,d) per decade, for each members (empty circles) and ensemble

mean for each model (full black circle). The last model on the right of each plot is the N216 ensemble. The

horizontal solid black line is ERAI and the dashed black line is OBS. The grey shading between the two indicates

observational uncertainty. (a,b) are results from the raw data while (c,d) are results obtained after correcting the

seasonal climatology (see text for description).
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FIG. 5. Percentage of days (y axis) as a function of warm day persistence (x axis, number of days). AMIP

and N216 members are represented by orange and blue density diagrams respectively. Red circles show ERAI

results, and green circles are OBS. See text Section 4b for more details. The coloured tics on the top axis indicate

the mean duration of HW events (more than 5 days) for ERAI (red), OBS (green), each member (short tics) and

ensemble mean (long tics) of AMIP (orange) and N216 (blue).
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FIG. 6. Sum of all HW days (during the 1979-2008 period), grouped by climatological pentad, for each N216

members. Gray bars indicate the total number of days, red bars are the days corresponding to long lasting HW

events (more than 10 days) and the black contour bars are the days corresponding to short HW events (5 to 10

days). On the top of the figures, results from ERAI and OBS are displayed on the left and the right respectively.
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FIG. 7. Mean duration of HW events (days) for each AMIP model (ensemble mean of each model, black

circles) and N216 member (grey circles), versus the daily variability (a,b) and the summer range (c,d). The red

circle and star indicates results from ERAI and OBS respectively. See text Section 4c for the definition of the

summer range and daily variability.
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FIG. 8. As Fig.5 but based on data after correcting (a) or removing (b) the seasonal climatology.
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FIG. 9. Evolution of the annual number of HW days (a), HW events (b) and warm days (c), with a 5-

year running mean. Solid black and red lines are ERAI and OBS respectively, and the gray shading indicates

uncertainty between the two. Light blue is the AMIP ensemble mean (line in the middle) and standard deviation.

Dark blue checked is the N216 ensemble mean and standard deviation.
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FIG. 10. (a) As Fig.9a but for the long HW events only (more than 10 days). (b) Long HW signal in N216 en-

semble without the 5-years running mean smoothing. (c) As Fig.9a but for HW events computed after removing

the interannual summer means from the temperatures (text Sections d).
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FIG. 11. Probability density function of the number of heat wave days or events during the 1980-1990 period

(filled green bars) and the 1998-2008 period (grey bars), for AMIP (a,b) and N216 (c,d). 2009-2013 is also

added for the N216 results (black contours).
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FIG. 12. Linear trends (Y axis) of the numbers of heat waves days (a) and events (b) per decade for each

AMIP model (X axis) model mean (circles) and standard deviation from multi-members models (black bars).

The N216 ensemble is indicated as model number 22. Green (blue) colour indicates the models considered as

good (bad) by the filtering method (see text Section 5), and the ensemble means (and dispersions) of the two

groups are shown by the green and blue square (and black bars). ERAI and OBS are shown with white and black

squares respectively.
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Fig. A1. Schematic representation of a composite computation (see text Section 2 and Appendix). The solid

black line is the daily time serie of a variable X , the solid red line is its daily climatology and the orange

shading represents the difference between the two. The dashed black line represent the annual mean of X and

the dashed red line is the annual climatology (and the difference is highlighted by the orange shading).
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