6,029 research outputs found

    Matter Enhanced Neutrino Oscillations with a Realistic Earth Density Profile

    Get PDF
    We have investigated matter enhanced neutrino oscillations with a mantle-core-mantle step function and a realistic Earth matter density profile in both a two and a three neutrino scenario. We found that the realistic Earth matter density profile can be well approximated with the mantle-core-mantle step function and that there could be an influence on the oscillation channel νμ→ντ\nu_\mu \to \nu_\tau due to resonant enhancement of one of the mixing angles.Comment: 8 pages, 5 figures (PostScript), MPLA LaTe

    Matter profile effect in neutrino factory

    Get PDF
    We point out that the matter profile effect --- the effect of matter density fluctuation on the baseline --- is very important to estimate the parameters in a neutrino factory with a very long baseline. To make it clear, we propose the method of the Fourier series expansion of the matter profile. By using this method, we can take account of both the matter profile effect and its ambiguity. For very long baseline experiment, such as L=7332km, in the analysis of the oscillation phenomena we need to introduce a new parameter a1 a_{1} --- the Fourier coefficient of the matter profile --- as a theoretical parameter to deal with the matter profile effects.Comment: 21 pages, 15 figure

    Nambu-Goldstone Modes in Gravitational Theories with Spontaneous Lorentz Breaking

    Full text link
    Spontaneous breaking of Lorentz symmetry has been suggested as a possible mechanism that might occur in the context of a fundamental Planck-scale theory, such as string theory or a quantum theory of gravity. However, if Lorentz symmetry is spontaneously broken, two sets of questions immediately arise: what is the fate of the Nambu-Goldstone modes, and can a Higgs mechanism occur? A brief summary of some recent work looking at these questions is presented here.Comment: 6 pages. Presented at the meeting "From Quantum to Cosmos," Washington, D.C., May 2006; published in Int. J. Mod. Phys. D16:2357-2363, 200

    Breaking Eight-fold Degeneracies in Neutrino CP Violation, Mixing, and Mass Hierarchy

    Get PDF
    We identify three independent two-fold parameter degeneracies (\delta, \theta_{13}), sgn(\delta m^2_{31}) and (\theta_{23}, \pi/2-\theta_{23}) inherent in the usual three-neutrino analysis of long-baseline neutrino experiments, which can lead to as much as an eight-fold degeneracy in the determination of the oscillation parameters. We discuss the implications these degeneracies have for detecting CP violation and present criteria for breaking them. A superbeam facility with a baseline at least as long as the distance between Fermilab and Homestake (1290 km) and a narrow band beam with energy tuned so that the measurements are performed at the first oscillation peak can resolve all the ambiguities other than the (\theta_{23}, \pi/2-\theta_{23}) ambiguity (which can be resolved at a neutrino factory) and a residual (\delta, \pi-\delta) ambiguity. However, whether or not CP violation occurs in the neutrino sector can be ascertained independently of the latter two ambiguities. The (\delta,\pi-\delta) ambiguity can be eliminated by performing a second measurement to which only the \cos\delta terms contribute. The hierarchy of mass eigenstates can be determined at other oscillation peaks only in the most optimistic conditions, making it necessary to use the first oscillation maximum. We show that the degeneracies may severely compromise the ability of the proposed SuperJHF-HyperKamiokande experiment to establish CP violation. In our calculations we use approximate analytic expressions for oscillation probabilitites that agree with numerical solutions with a realistic Earth density profile.Comment: Revtex (singlespaced), 35 pages, 15 postscript figures, uses psfig.st

    Heavy quarks in deeply virtual Compton scattering

    Full text link
    A detailed study of the heavy quark h=c,b,... contributions to deeply virtual Compton scattering is performed at both the amplitude and the cross section level, and their phenomenological relevance is discussed. For this purpose I calculate the lowest order off-forward photon-gluon scattering amplitude with a massive quark loop and the corresponding hard scattering coefficients. In a first numerical analysis these fixed order perturbation theory results are compared with the conventional intrinsic "massless" parton approach considering generalized parton distributions for the heavy quarks. The differences between these two prescriptions can be quite significant, especially at small skewedness where the massless approach largely overestimates the deeply virtual Compton scattering cross section.Comment: 15 pages, 12 eps-figures, LaTeX2e; (V2) include correct figure 3b, remove 'bottom' from figure caption

    Signed zeros of Gaussian vector fields-density, correlation functions and curvature

    Full text link
    We calculate correlation functions of the (signed) density of zeros of Gaussian distributed vector fields. We are able to express correlation functions of arbitrary order through the curvature tensor of a certain abstract Riemann-Cartan or Riemannian manifold. As an application, we discuss one- and two-point functions. The zeros of a two-dimensional Gaussian vector field model the distribution of topological defects in the high-temperature phase of two-dimensional systems with orientational degrees of freedom, such as superfluid films, thin superconductors and liquid crystals.Comment: 14 pages, 1 figure, uses iopart.cls, improved presentation, to appear in J. Phys.

    On the Optimum Long Baseline for the Next Generation Neutrino Oscillation Experiments

    Full text link
    For high energy long baseline neutrino oscillation experiments, we propose a Figure of Merit criterion to compare the statistical quality of experiments at various oscillation distances under the condition of identical detectors and a given neutrino beam. We take into account all possible experimental errors under general consideration. In this way the Figure of Merit is closely related to the usual statistical criterion of number of sigmas. We use a realistic neutrino beam for an entry level neutrino factory and a possible superbeam from a meson source and a 100 kt detector for the calculation. We considered in detail four oscillation distances, 300 km, 700 km, 2100 km and 3000 km, in the neutrino energy range of 0.5-20 GeV for a 20 GeV entry level neutrino factory and a 50 GeV superbeam. We found that the very long baselines of 2100 km and 3000 km are preferred for the neutrino factory according to the figure of merit criterion. Our results also show that, for a neutrino factory, lower primary muon energies such as 20 GeV are preferred rather than higher ones such as 30 or 50 GeV. For the superbeam, the combination of a long baseline such as 300 km and a very long baseline like 2100 km will form a complete measurement of the oscillation parameters besides the CP phase. To measure the CP phase in a superbeam, a larger detector (a factor 3 beyond what is considered in this article) and/or a higher intensity beam will be needed to put some significant constraints on the size of the CP angle.Comment: 21 LaTeX pages, 13 PS figures, typos corrected, references adde

    Analysis and optimization of a free-electron laser with an irregular waveguide

    Full text link
    Using a time-dependent approach the analysis and optimization of a planar FEL-amplifier with an axial magnetic field and an irregular waveguide is performed. By applying methods of nonlinear dynamics three-dimensional equations of motion and the excitation equation are partly integrated in an analytical way. As a result, a self-consistent reduced model of the FEL is built in special phase space. The reduced model is the generalization of the Colson-Bonifacio model and takes into account the intricate dynamics of electrons in the pump magnetic field and the intramode scattering in the irregular waveguide. The reduced model and concepts of evolutionary computation are used to find optimal waveguide profiles. The numerical simulation of the original non-simplified model is performed to check the effectiveness of found optimal profiles. The FEL parameters are chosen to be close to the parameters of the experiment (S. Cheng et al. IEEE Trans. Plasma Sci. 1996, vol. 24, p. 750), in which a sheet electron beam with the moderate thickness interacts with the TE01 mode of a rectangular waveguide. The results strongly indicate that one can improve the efficiency by a factor of five or six if the FEL operates in the magnetoresonance regime and if the irregular waveguide with the optimized profile is used

    Three-Dimensional Ab Initio Quantum Dynamics of the Photodesorption of CO from Cr<sub>2</sub>O<sub>3</sub>(0001): Stereodynamic Effects

    Get PDF
    Having performed the first three-dimensional ab initio quantum dynamical study of photodesorption from solid surfaces, we gained mechanistic understanding of the rotational alignment observed in the CO/Cr2O3(0001) system. Our study is based on potential energy surfaces obtained by embedded cluster calculations for both the electronic ground and excited state of the adsorbate substrate complex. Stochastic wave packet calculations demonstrate the importance of the angular degrees of freedom for the microscopic picture of the desorption process in addition to the desorption coordinate

    Learning from Minimum Entropy Queries in a Large Committee Machine

    Full text link
    In supervised learning, the redundancy contained in random examples can be avoided by learning from queries. Using statistical mechanics, we study learning from minimum entropy queries in a large tree-committee machine. The generalization error decreases exponentially with the number of training examples, providing a significant improvement over the algebraic decay for random examples. The connection between entropy and generalization error in multi-layer networks is discussed, and a computationally cheap algorithm for constructing queries is suggested and analysed.Comment: 4 pages, REVTeX, multicol, epsf, two postscript figures. To appear in Physical Review E (Rapid Communications
    • …
    corecore