11,347 research outputs found

    Ultrasonic Doppler measurement of renal artery blood flow

    Get PDF
    An extensive evaluation of the practical and theoretical limitations encountered in the use of totally implantable CW Doppler flowmeters is provided. Theoretical analyses, computer models, in-vitro and in-vivo calibration studies describe the sources and magnitudes of potential errors in the measurement of blood flow through the renal artery, as well as larger vessels in the circulatory system. The evaluation of new flowmeter/transducer systems and their use in physiological investigations is reported

    Drip and Mate Operations Acting in Test Tube Systems and Tissue-like P systems

    Full text link
    The operations drip and mate considered in (mem)brane computing resemble the operations cut and recombination well known from DNA computing. We here consider sets of vesicles with multisets of objects on their outside membrane interacting by drip and mate in two different setups: in test tube systems, the vesicles may pass from one tube to another one provided they fulfill specific constraints; in tissue-like P systems, the vesicles are immediately passed to specified cells after having undergone a drip or mate operation. In both variants, computational completeness can be obtained, yet with different constraints for the drip and mate operations

    Solutions without singularities in gauge theory of gravitation

    Full text link
    A de-Sitter gauge theory of the gravitational field is developed using a spherical symmetric Minkowski space-time as base manifold. The gravitational field is described by gauge potentials and the mathematical structure of the underlying space-time is not affected by physical events. The field equations are written and their solutions without singularities are obtained by imposing some constraints on the invariants of the model. An example of such a solution is given and its dependence on the cosmological constant is studied. A comparison with results obtained in General Relativity theory is also presented. Keywords: gauge theory, gravitation, singularity, computer algebraComment: 9 pages, no figure

    QCD evolution and skewedness effects in color dipole description of DVCS

    Get PDF
    We show the role played by QCD evolution and skewedness effects in the DVCS cross section at large Q2Q^2 within the color dipole description of the process at photon level. The dipole cross section is given by the saturation model, which can be improved by DGLAP evolution at high photon virtualities. We investigate both possibilities as well as the off-forward effect through a simple phenomenological parametrisation. The results are compared to the recent ZEUS DVCS data.Comment: LaTeX, 6 pages, 5 Figs. Vers 2: Minor modifications. Accepted by EPJ

    Density functional theory modeling of vortex shedding in superfluid He-4

    Full text link
    Formation of vortex rings around moving spherical objects in superfluid He-4 at 0 K is modeled by time-dependent density functional theory. The simulations provide detailed information of the microscopic events that lead to vortex ring emission through characteristic observables such as liquid current circulation, drag force, and hydrodynamic mass. A series of simulations were performed to determine velocity thresholds for the onset of dissipation as a function of the sphere radius up to 1.8 nm and at external pressures of zero and 1 bar. The threshold was observed to decrease with the sphere radius and increase with pressure thus showing that the onset of dissipation does not involve roton emission events (Landau critical velocity), but rather vortex emission (Feynman critical velocity), which is also confirmed by the observed periodic response of the hydrodynamic observables as well as visualization of the liquid current circulation. An empirical model, which considers the ratio between the boundary layer kinetic and vortex ring formation energies, is presented for extrapolating the current results to larger length scales. The calculated critical velocity value at zero pressure for a sphere that mimics an electron bubble is in good agreement with the previous experimental observations at low temperatures. The stability of the system against symmetry breaking was linked to its ability to excite quantized Kelvin waves around the vortex rings during the vortex shedding process. At high vortex ring emission rates, the downstream dynamics showed complex vortex ring fission and reconnection events that appear similar to those seen in previous Gross-Pitaevskii theory-based calculations, and which mark the onset of turbulent behavior.Comment: 23 pages, 7 figure

    Equilibrium orbit analysis in a free-electron laser with a coaxial wiggler

    Full text link
    An analysis of single-electron orbits in combined coaxial wiggler and axial guide magnetic fields is presented. Solutions of the equations of motion are developed in a form convenient for computing orbital velocity components and trajectories in the radially dependent wiggler. Simple analytical solutions are obtained in the radially-uniform-wiggler approximation and a formula for the derivative of the axial velocity vv_{\|} with respect to Lorentz factor γ\gamma is derived. Results of numerical computations are presented and the characteristics of the equilibrium orbits are discussed. The third spatial harmonic of the coaxial wiggler field gives rise to group IIIIII orbits which are characterized by a strong negative mass regime.Comment: 13 pages, 9 figures, to appear in phys. rev.

    Finite Element Analysis of Strain Effects on Electronic and Transport Properties in Quantum Dots and Wires

    Full text link
    Lattice mismatch in layered semiconductor structures with submicron length scales leads to extremely high nonuniform strains. This paper presents a finite element technique for incorporating the effects of the nonuniform strain into an analysis of the electronic properties of SiGe quantum structures. Strain fields are calculated using a standard structural mechanics finite element package and the effects are included as a nonuniform potential directly in the time independent Schrodinger equation; a k-p Hamiltonian is used to model the effects of multiple valence subband coupling. A variational statement of the equation is formulated and solved using the finite element method. This technique is applied to resonant tunneling diode quantum dots and wires; the resulting densities of states confined to the quantum well layers of the devices are compared to experimental current-voltage I(V) curves.Comment: 17 pages (LaTex), 18 figures (JPEG), submitted to Journal of Applied Physic

    The DVCS Measurement at HERA

    Full text link
    The recent results of the studies of Deeply Virtual Compton Scattering (DVCS) events at HERA are presented. The possibility offered by this process to gain information about skewed parton distributions (SPD) is emphasized.Comment: Talk given at New Trends in HERA Physics 2001, Ringberg Castle, Tegernsee, Germany, 17-22 Jun 2001, 13 pages, 10 figures, recent ZEUS data discussed, references update
    corecore