459 research outputs found

    Noise induced currents and reliability of transport in frictional ratchets

    Get PDF
    We study the coherence of transport of an overdamped Brownian particle in frictional ratchet system in the presence of external Gaussian white noise fluctuations. The analytical expressions for the particle velocity and diffusion coefficient are derived for this system and the reliability or coherence of transport is analysed by means of their ratio in terms of a dimensionless Peˊ\acute{e}clet number. We show that the coherence in the transport can be enhanced or degraded depending sensitively on the frictional profile with respect to the underlying potential.Comment: 7 pages, 6 figure

    Enrichment of CH3F nuclear spin isomers by resonant microwave radiation

    Get PDF
    Theoretical model of the coherent control of nuclear spin isomers by microwave radiation has been developed. Model accounts the M-degeneracy of molecular states and molecular center-of-mass motion. The model has been applied to the 13CH3F molecules. Microwave radiation excites the para state (J=11,K=1) which is mixed by the nuclear spin-spin interaction with the ortho state (9,3). Dependencies of the isomer enrichment and conversion rates on the radiation frequency have been calculated. Both spectra consist of two resonances situated at the centers of allowed and forbidden (by nuclear spin) transitions in the molecule. Larger enrichment, up to 7%, can be produced by strong radiation resonant to the forbidden transition. The spin conversion rate can be increased by 2 orders of magnitude at this resonance.Comment: REVTEX, 14 pages + 6 eps figure

    The role of matter density uncertainties in the analysis of future neutrino factory experiments

    Full text link
    Matter density uncertainties can affect the measurements of the neutrino oscillation parameters at future neutrino factory experiments, such as the measurements of the mixing parameters θ13\theta_{13} and \deltacp. We compare different matter density uncertainty models and discuss the possibility to include the matter density uncertainties in a complete statistical analysis. Furthermore, we systematically study in which measurements and where in the parameter space matter density uncertainties are most relevant. We illustrate this discussion with examples that show the effects as functions of different magnitudes of the matter density uncertainties. We find that matter density uncertainties are especially relevant for large \stheta \gtrsim 10^{-3}. Within the KamLAND-allowed range, they are most relevant for the precision measurements of \stheta and \deltacp, but less relevant for ``binary'' measurements, such as for the sign of \ldm, the sensitivity to \stheta, or the sensitivity to maximal CP violation. In addition, we demonstrate that knowing the matter density along a specific baseline better than to about 1% precision means that all measurements will become almost independent of the matter density uncertainties.Comment: 21 pages, 7 figures, LaTeX. Final version to be published in Phys. Rev.

    Conformal Invariance and Degrees of Freedom in the QCD String

    Full text link
    We demonstrate that the Hagedorn-like growth of the number of observed meson states can be used to constrain the degrees of freedom of the underlying effective QCD string. We find that the temperature relevant for such string theories is not given by the usual Hagedorn value TH160T_H\approx 160 MeV, but is considerably higher. This resolves an apparent conflict with the results from a static quark-potential analysis, and suggests that conformal invariance and modular invariance are indeed reflected in the hadronic spectrum. We also find that the D=2D_\perp=2 scalar string is in excellent agreement with data.Comment: 13 pages (Standard LaTeX); --> replaced version emphasizes new results, and agrees with version to appear in Physical Review Letters (Jan 1994

    Molecular vibration in cold collision theory

    Full text link
    Cold collisions of ground state oxygen molecules with Helium have been investigated in a wide range of cold collision energies (from 1 μ\muK up to 10 K) treating the oxygen molecule first as a rigid rotor and then introducing the vibrational degree of freedom. The comparison between the two models shows that at low energies the rigid rotor approximation is very accurate and able to describe all the dynamical features of the system. The comparison between the two models has also been extended to cases where the interaction potential He - O2_2 is made artificially stronger. In this case vibration can perturb rate constants, but fine-tuning the rigid rotor potential can alleviate the discrepancies between the two models.Comment: 11 pages, 3 figure

    Reliability of fluctuation-induced transport in a Maxwell-demon-type engine

    Get PDF
    We study the transport properties of an overdamped Brownian particle which is simultaneously in contact with two thermal baths. The first bath is modeled by an additive thermal noise at temperature TAT_A. The second bath is associated with a multiplicative thermal noise at temperature TBT_B. The analytical expressions for the particle velocity and diffusion constant are derived for this system, and the reliability or coherence of transport is analyzed by means of their ratio in terms of a dimensionless P\'{e}clet number. We find that the transport is not very coherent, though one can get significantly higher currents.Comment: 14 pages, 5 figure

    Ricci flat rotating black branes with a conformally invariant Maxwell source

    Full text link
    We consider Einstein gravity coupled to an U(1)U(1) gauge field for which the density is given by a power of the Maxwell Lagrangian. In dd-dimensions the action of Maxwell field is shown to enjoy the conformal invariance if the power is chosen as d/4d/4. We present a class of charge rotating solutions in Einstein-conformally invariant Maxwell gravity in the presence of a cosmological constant. These solutions may be interpreted as black brane solutions with inner and outer event horizons or an extreme black brane depending on the value of the mass parameter. Since we are considering power of the Maxwell density, the black brane solutions exist only for dimensions which are multiples of four. We compute conserved and thermodynamics quantities of the black brane solutions and show that the expression of the electric field does not depend on the dimension. Also, we obtain a Smarr-type formula and show that these conserved and thermodynamic quantities of black branes satisfy the first law of thermodynamics. Finally, we study the phase behavior of the rotating black branes and show that there is no Hawking--Page phase transition in spite of conformally invariant Maxwell field.Comment: 13 pages, one figur

    Measuring CP violation and mass ordering in joint long baseline experiments with superbeams

    Get PDF
    We propose to measure the CP phase δCP\delta_{\rm CP}, the magnitude of the neutrino mixing matrix element Ue3|U_{e3}| and the sign of the atmopheric scale mass--squared difference Δm312\Delta{\rm m}^2_{31} with a superbeam by the joint analysis of two different long baseline neutrino oscillation experiments. One is a long baseline experiment (LBL) at 300 km and the other is a very long baseline (VLBL) experiment at 2100 km. We take the neutrino source to be the approved high intensity proton synchrotron, HIPA. The neutrino beam for the LBL is the 2-degree off-axis superbeam and for the VLBL, a narrow band superbeam. Taking into account all possible errors, we evaluate the event rates required and the sensitivities that can be attained for the determination of δCP\delta_{\rm CP} and the sign of Δm312\Delta m^2_{31}. We arrive at a representative scenario for a reasonably precise probe of this part of the neutrino physics.Comment: 25 RevTEX pages, 16 PS figures, revised figure captions and references adde

    Supercoherent States, Super K\"ahler Geometry and Geometric Quantization

    Full text link
    Generalized coherent states provide a means of connecting square integrable representations of a semi-simple Lie group with the symplectic geometry of some of its homogeneous spaces. In the first part of the present work this point of view is extended to the supersymmetric context, through the study of the OSp(2/2) coherent states. These are explicitly constructed starting from the known abstract typical and atypical representations of osp(2/2). Their underlying geometries turn out to be those of supersymplectic OSp(2/2) homogeneous spaces. Moment maps identifying the latter with coadjoint orbits of OSp(2/2) are exhibited via Berezin's symbols. When considered within Rothstein's general paradigm, these results lead to a natural general definition of a super K\"ahler supermanifold, the supergeometry of which is determined in terms of the usual geometry of holomorphic Hermitian vector bundles over K\"ahler manifolds. In particular, the supergeometry of the above orbits is interpreted in terms of the geometry of Einstein-Hermitian vector bundles. In the second part, an extension of the full geometric quantization procedure is applied to the same coadjoint orbits. Thanks to the super K\"ahler character of the latter, this procedure leads to explicit super unitary irreducible representations of OSp(2/2) in super Hilbert spaces of L2L^2 superholomorphic sections of prequantum bundles of the Kostant type. This work lays the foundations of a program aimed at classifying Lie supergroups' coadjoint orbits and their associated irreducible representations, ultimately leading to harmonic superanalysis. For this purpose a set of consistent conventions is exhibited.Comment: 53 pages, AMS-LaTeX (or LaTeX+AMSfonts
    corecore