753 research outputs found

    Three fermions with six single particle states can be entangled in two inequivalent ways

    Full text link
    Using a generalization of Cayley's hyperdeterminant as a new measure of tripartite fermionic entanglement we obtain the SLOCC classification of three-fermion systems with six single particle states. A special subclass of such three-fermion systems is shown to have the same properties as the well-known three-qubit ones. Our results can be presented in a unified way using Freudenthal triple systems based on cubic Jordan algebras. For systems with an arbitrary number of fermions and single particle states we propose the Pl\"ucker relations as a sufficient and necessary condition of separability.Comment: 23 pages LATE

    Linking working memory and long-term memory: A computational model of the learning of new words

    Get PDF
    The nonword repetition (NWR) test has been shown to be a good predictor of children’s vocabulary size. NWR performance has been explained using phonological working memory, which is seen as a critical component in the learning of new words. However, no detailed specification of the link between phonological working memory and long-term memory (LTM) has been proposed. In this paper, we present a computational model of children’s vocabulary acquisition (EPAM-VOC) that specifies how phonological working memory and LTM interact. The model learns phoneme sequences, which are stored in LTM and mediate how much information can be held in working memory. The model’s behaviour is compared with that of children in a new study of NWR, conducted in order to ensure the same nonword stimuli and methodology across ages. EPAM-VOC shows a pattern of results similar to that of children: performance is better for shorter nonwords and for wordlike nonwords, and performance improves with age. EPAM-VOC also simulates the superior performance for single consonant nonwords over clustered consonant nonwords found in previous NWR studies. EPAM-VOC provides a simple and elegant computational account of some of the key processes involved in the learning of new words: it specifies how phonological working memory and LTM interact; makes testable predictions; and suggests that developmental changes in NWR performance may reflect differences in the amount of information that has been encoded in LTM rather than developmental changes in working memory capacity. Keywords: EPAM, working memory, long-term memory, nonword repetition, vocabulary acquisition, developmental change

    Geometric scaling in high-energy QCD at nonzero momentum transfer

    Full text link
    We show how one can obtain geometric scaling properties from the Balitsky-Kovchegov (BK) equation. We start by explaining how, this property arises for the b-independent BK equation. We show that it is possible to extend this model to the full BK equation including momentum transfer. The saturation scale behaves like max(q,Q_T) where q is the momentum transfer and Q_T a typical scale of the target.Comment: 4 pages, 2 figures. Talk given by G. Soyez at the "Rencontres de Moriond", 12-19 March 2005, La Thuile, Ital

    Small Orbits

    Full text link
    We study both the "large" and "small" U-duality charge orbits of extremal black holes appearing in D = 5 and D = 4 Maxwell-Einstein supergravity theories with symmetric scalar manifolds. We exploit a formalism based on cubic Jordan algebras and their associated Freudenthal triple systems, in order to derive the minimal charge representatives, their stabilizers and the associated "moduli spaces". After recalling N = 8 maximal supergravity, we consider N = 2 and N = 4 theories coupled to an arbitrary number of vector multiplets, as well as N = 2 magic, STU, ST^2 and T^3 models. While the STU model may be considered as part of the general N = 2 sequence, albeit with an additional triality symmetry, the ST^2 and T^3 models demand a separate treatment, since their representative Jordan algebras are Euclidean or only admit non-zero elements of rank 3, respectively. Finally, we also consider minimally coupled N = 2, matter coupled N = 3, and "pure" N = 5 theories.Comment: 40 pages, 9 tables. References added. Expanded comments added to sections III. C. 1. and III. F.

    Common Representation of Information Flows for Dynamic Coalitions

    Full text link
    We propose a formal foundation for reasoning about access control policies within a Dynamic Coalition, defining an abstraction over existing access control models and providing mechanisms for translation of those models into information-flow domain. The abstracted information-flow domain model, called a Common Representation, can then be used for defining a way to control the evolution of Dynamic Coalitions with respect to information flow

    Diagnosing students' difficulties in learning mathematics

    Get PDF
    This study considers the results of a diagnostic test of student difficulty and contrasts the difference in performance between the lower attaining quartile and the higher quartile. It illustrates a difference in qualitative thinking between those who succeed and those who fail in mathematics, illustrating a theory that those who fail are performing a more difficult type of mathematics (coordinating procedures) than those who succeed (manipulating concepts). Students who have to coordinate or reverse processes in time will encounter far greater difficulty than those who can manipulate symbols in a flexible way. The consequences of such a dichotomy and implications for remediation are then considered

    Size effects in statistical fracture

    Full text link
    We review statistical theories and numerical methods employed to consider the sample size dependence of the failure strength distribution of disordered materials. We first overview the analytical predictions of extreme value statistics and fiber bundle models and discuss their limitations. Next, we review energetic and geometric approaches to fracture size effects for specimens with a flaw. Finally, we overview the numerical simulations of lattice models and compare with theoretical models.Comment: review article 19 pages, 5 figure

    Representations of the exceptional and other Lie algebras with integral eigenvalues of the Casimir operator

    Full text link
    The uniformity, for the family of exceptional Lie algebras g, of the decompositions of the powers of their adjoint representations is well-known now for powers up to the fourth. The paper describes an extension of this uniformity for the totally antisymmetrised n-th powers up to n=9, identifying (see Tables 3 and 6) families of representations with integer eigenvalues 5,...,9 for the quadratic Casimir operator, in each case providing a formula (see eq. (11) to (15)) for the dimensions of the representations in the family as a function of D=dim g. This generalises previous results for powers j and Casimir eigenvalues j, j<=4. Many intriguing, perhaps puzzling, features of the dimension formulas are discussed and the possibility that they may be valid for a wider class of not necessarily simple Lie algebras is considered.Comment: 16 pages, LaTeX, 1 figure, 9 tables; v2: presentation improved, typos correcte

    Electrodynamic Model of the Heart to Detect Necrotic Areas in a Human Heart

    Get PDF
    To diagnose the conditions and diseases of the cardiovascular system is the main task of electrocardiology. The problem of the cardiovascular system diagnostics is caused by a complex multi-level mechanism of its functioning, and only experienced specialists are able to establish a correct diagnosis. Since the working heart is inaccessible to direct observations in real life, diagnostics of diseases is based on noninvasive methods such as electrocardiography. By assumption, weak "bursts" (micropotentials) of electrocardiographic signals in different areas are the precursors of dangerous arrhythmias. The amplitude of these signals on the body surface is insignificant and tends to be commensurate with the noise level of the measuring system. Advances in electrocardiography make it possible to generate a high resolution ECG signal and to detect the heart micropotentials. The method of modeling helps to understand causes of micropotentials in the ECG signal by selecting the model parameters. The model of the heart should allow generating a signal close to the high resolution ECG signal. The research aims to find a numerical model that allows solving the inverse problem of the heart tissue characteristics recovery using a high resolution ECG signal and CT data on the heart geometry. The proposed computer model and highly sensitive methods for the ECG measurement are the part of the hardware-software complex to detect dangerous precursors of cardiac arrhythmias

    Black holes admitting a Freudenthal dual

    Full text link
    The quantised charges x of four dimensional stringy black holes may be assigned to elements of an integral Freudenthal triple system whose automorphism group is the corresponding U-duality and whose U-invariant quartic norm Delta(x) determines the lowest order entropy. Here we introduce a Freudenthal duality x -> \tilde{x}, for which \tilde{\tilde{x}}=-x. Although distinct from U-duality it nevertheless leaves Delta(x) invariant. However, the requirement that \tilde{x} be integer restricts us to the subset of black holes for which Delta(x) is necessarily a perfect square. The issue of higher-order corrections remains open as some, but not all, of the discrete U-duality invariants are Freudenthal invariant. Similarly, the quantised charges A of five dimensional black holes and strings may be assigned to elements of an integral Jordan algebra, whose cubic norm N(A) determines the lowest order entropy. We introduce an analogous Jordan dual A*, with N(A) necessarily a perfect cube, for which A**=A and which leaves N(A) invariant. The two dualities are related by a 4D/5D lift.Comment: 32 pages revtex, 10 tables; minor corrections, references adde
    corecore