483 research outputs found
Recommended from our members
The Influence of Cu-Additions on the Microstructure, Mechanical and Magnetic Properties of MnAl-C Alloys
Alloys of the form (Mn54Al44C2)100-xCux (with x = 0, 1, 2, 4 and 6) were produced by induction melting. After homogenisation and quenching, most of the alloys consist entirely of the retained ε-phase, except for x = 6, in which the κ-phase was additionally present. After subsequent annealing, the alloys with x ≤ 2 consist entirely of a Cu-doped, ferromagnetic τ-phase, whereas the alloys with x > 2 additionally contain the κ-phase. The polarisation of the alloys at an applied field of 14 T decreases with increasing Cu-content, which is attributed i) to the dilution of the magnetic moment of the τ-phase unit cell by the Cu atoms, which do not carry a magnetic moment, and ii) at higher Cu-contents, to the formation of the κ-phase, which has a much lower polarisation than the τ-phase and therefore dilutes the net polarisation of the alloys. The Curie temperature was not affected by the Cu-additions. The stress needed to die-upset the alloys with x ≤ 2 was similar to that of the undoped alloy, whereas it was much lower for x = 4 and 6, due to the presence of intergranular layers of the κ-phase. The extrinsic magnetic properties of alloys with x ≤ 2 were improved by die-upsetting, whereas decomposition of the τ-phase during processing had a deleterious effect on the magnetic properties for higher Cu-additions
Comment on ``Reduction of static field equation of Faddeev model to first order PDE'', arXiv:0707.2207
The authors of the article Phys. Lett. B 652 (2007) 384, (arXiv:0707.2207),
propose an interesting method to solve the Faddeev model by reducing it to a
set of first order PDEs. They first construct a vectorial quantity , depending on the original field and its first derivatives, in terms of which
the field equations reduce to a linear first order equation. Then they find
vectors and which identically obey this linear
first order equation. The last step consists in the identification of the with the original as a function of the original field.
Unfortunately, the derivation of this last step in the paper cited above
contains an error which invalidates most of its results
Breakdown of Varvenne scaling in (AuNiPdPt) Cu high-entropy alloys
The compositional dependence of the yield strength σ has been studied for a series of polycrystalline (AuNiPdPt)Cu alloys by means of compression tests. σ is found to decrease linearly with increasing Cu concentration. This behaviour is in contradiction to the generalised theory for solid solution strengthening in concentrated solid solutions provided by Varvenne et al. [1]. A breakdown of the scaling behaviour is found as σy should be non-linear and slightly increasing when modifying the composition from AuNiPdPt to AuCuNiPdPt
Network Structures and the Properties of Na-Ca-Sr-Borophosphate Glasses
Borophosphate glasses were prepared with the nominal molar compositions 16Na2O-(24-y)CaO-ySrO-xB2O3-(60-x)P2O5 (mol%), where 0≤x≤60 and y=0, 12, and 24. Information about the compositional dependence of borate and phosphate site speciation and next nearest neighbor linkages was obtained by 11B and 31P MAS NMR and Raman spectroscopies, and by high pressure liquid chromatography (HPLC). With the initial replacement of P2O5 by B2O3, tetrahedral borate sites linked to four phosphate anions, B(ØP)4, are created in the glass structure, and the average phosphate anion becomes smaller as bridging PØP bonds are replaced by bridging PØB bonds. With further increases in the B2O3 content, borate units, including B-triangles, replace phosphate units linked to the B-tetrahedra. Compositional trends for the glass transition temperature (Tg) and molar volume are explained by considering the number and types of bridging oxygens per glass former, consistent with topological models reported elsewhere
Recommended from our members
Entropy of conduction electrons from transport experiments
The entropy of conduction electrons was evaluated utilizing the thermodynamic definition of the Seebeck coefficient as a tool. This analysis was applied to two dierent kinds of scientific questions that can-if at all-be only partially addressed by other methods. These are the field-dependence of meta-magnetic phase transitions and the electronic structure in strongly disordered materials, such as alloys. We showed that the electronic entropy change in meta-magnetic transitions is not constant with the applied magnetic field, as is usually assumed. Furthermore, we traced the evolution of the electronic entropy with respect to the chemical composition of an alloy series. Insights about the strength and kind of interactions appearing in the exemplary materials can be identified in the experiments
- …