200 research outputs found

    Rapid and accurate fatigue assessment by an efficient critical plane algorithm: application to a FSAE car rear upright

    Get PDF
    The topic of material fatigue is widely discussed and researched in both scientific and industrial communities. Fatigue damage remains a significant issue for both metallic and non-metallic components, leading to unforeseen failures of in-service parts. Critical plane methods are particularly recommended in case of multiaxial fatigue assessment and have gained relevance as they allow for the identification of the component's critical location and early crack propagation. However, the standard method for calculating critical plane factors is time-consuming, utilizing nested for/end loops and, for that, is mainly applied in a research context, or when critical regions are already known. In many cases, the critical area of a component cannot be identified due to complex geometries and loads or time constraints. This becomes particularly relevant after topological optimization of components and, more generally, in lightweight design. An efficient algorithm for critical plane factors evaluation have been recently proposed by the authors. The algorithm applies to all critical plane factors that require the maximization of a specific parameter based on stress and strain components or a combination of them. The methodology is based on tensor invariants and coordinates transformation law. This paper presents and validate the proposed methodology through an automotive case study: the new algorithm was tested on a rear upright of a FSAE car, having complex geometry, subjected to non-proportional loading conditions. The efficient algorithm showed a significant reduction in computation time compared to the (blind search-for) standard plane scanning method, without any loss in solution accuracy

    Frequency analysis of random fatigue: setup for an experimental study

    Get PDF
    The frequency-domain approach to fatigue life estimation in random loading has been largely investigated due to its computational advantages, and several methods for the frequency translation of the most common time-domain methods have been proposed. Between the most known frequency methods there are the Bendat's Method, valid for narrow-band signals, and the Dirlik's formula, which is considered the best result for wide-band signals. However, the great part of the frequency methods takes the rainflow count as a reference time-domain method and uses the rainflow damage computation as the exact value to emulate. Therefore, very few experimental data for fatigue life of mechanical components subject to random loads are available in the literature. This work presents the setup for a series of experimental tests for specimens subjected to random loads, aiming at achieving experimental data to compare with the results provided by frequency methods. After a brief description of the materials used for the setup, the two-step test concept is described: firstly, the specimen will be subjected to random loads obtained by a certain PSD for an amount of time which should nominally cause a 30% of damage; then, the fatigue test will be ended on a resonance testing machine to compute the actual residual fatigue life of the specimen; this two-step testing also allows to reduce the time requested for the tests. The test bench developed for the experimental investigation is described in the paper, together with the results of some preliminary tests, aimed at verifying the feasibility of the conceived procedure

    Numerical-experimental characterization of the dynamic behavior of PCB for the fatigue analysis of PCBa

    Get PDF
    In today's highly digitized and mechatronics-based world, the need for reliable and cost-effective electronic components has become essential. The reliability of these components is not only based on their electrical and circuit aspects but also on their structural properties. This paper presents a study carried out on two-layer Printed Circuit Boards (PCBs) of rectangular shape, which are representative of many industrial applications. The aim of this study is to compare different numerical models, developed in Ansys Workbench and in a FEM software specifically designed for circuit boards, with experimental tests to determine the most interesting ones for further studies on Printed Circuit Board Assemblies (PCBAs). The comparison includes both static and dynamic behaviors, tested through isostatic bending tests and dynamic analyses with a shaker and a fiber optic laser. The models developed are capable of reproducing statics and dynamics of PCBs with varying degrees of accuracy and numerical complexity. However, increasing the details of the models does not always correspond to an increase in accuracy in reproducing the dynamic behavior. Prior to the experimental dynamic analysis, the influence of constraints’ modeling strategies and damping on the first eigenmode was studied, and the results were used to set up tests and simulations to achieve more consistent results. Future work will extend the dynamic characterization to PCBAs by populating the studied PCBs with components, and continue with the study of predictive models for their structural reliability

    On the use of shape memory alloys for deployable passive heat radiators in space satellites

    Get PDF
    The present work presents a multifunctional structure for space engineering application part of the TOPDESS project, funded by ESA. The main aim of the project is the design of a thermal control device able to deploy through passive actuation. A combined device has been designed, made up of a Pulsating Heat Pipe (PHP) foldable heat exchanger and Shape Memory Alloy (SMA) wire. The deployment of the SMA wire is conceived to be controlled by thermal contact with the heat source and by conduction along the wire. Since the heat sources are lumped and the wire is subject to convection, a temperature gradient develops along the wire. A monodimensional mode able to predict the behavior of an SMA wire subjected to a spatial temperature gradient, is presented in this paper. The results show that the system can carry out folding and unfolding cycles with rotation angles greater than 80° only if the wire is subjected to uniform temperature distribution; in the case of temperature gradient, the achievable rotation angle is about 20°. The analysis states the feasibility of the actuation system, highlighting the critical technological aspects, to lay the groundwork for the future development of the whole system

    Assessment, control, and prevention of microbiological and chemical hazards in seasonal swimming pools of the Versilia district (Tuscany, central Italy).

    Get PDF
    Abstract Although in Europe the quality of swimming pools (SPs) is dictated by regulations, microbiological and chemical hazards are described in the literature. Environmental bacteria or toxic disinfection by-product (DBP) compounds may indeed be recovered in waters even after disinfection. We evaluated the water quality from 26 outdoor seasonal SPs of the Versilia district, according to requirements of Regional Decree 54R/2015. In spring 2017, supply and reinstatement waters were collected after shock hyperchlorination (10 mg/L) while in summertime, a second sampling of waters before entering the pools, as well as in the pools, was performed after SPs were open to the public. In all samples, microbiological and chemical parameters were determined as defined by Directive 98/83/EC and the Italian Health Ministry. Microbiological data were within suggested limits. The first chemical analyses showed that in 35% of the feeding-pool seawater samples, the halogenated organic compounds were higher than the maximum permissible concentrations (30 μg/L). Pool waters were then dechlorinated and re-treated with hydrogen peroxide (10 mg/L) to ensure the abatement of DBPs (from 164 ± 107 to 0.9 ± 0.8 μg/L; p = 0.002). Results highlighted the need of self-controlled procedures for the SPs waters to prevent waterborne diseases and suggested hydrogen peroxide as the most appropriate disinfection method

    Prevalence of asthma, aspirin sensitivity and allergy in chronic rhinosinusitis: data from the UK National Chronic Rhinosinusitis Epidemiology Study

    Get PDF
    Background: Chronic rhinosinusitis (CRS) is a common disorder associated with other respiratory tract diseases such as asthma and inhalant allergy. However, the prevalence of these co-morbidities varies considerably in the existing medical literature and by phenotype of CRS studied. The study objective was to identify the prevalence of asthma, inhalant allergy and aspirin sensitivity in CRS patients referred to secondary care and establish any differences between CRS phenotypes. Methods: All participants were diagnosed in secondary care according to international guidelines and invited to complete a questionnaire including details of co-morbidities and allergies. Data were analysed for differences between controls and CRS participants and between phenotypes using chi-squared tests. Results: The final analysis included 1470 study participants: 221 controls, 553 CRS without nasal polyps (CRSsNPs), 651 CRS with nasal polyps (CRSwNPs) and 45 allergic fungal rhinosinusitis (AFRS). The prevalence of asthma was 9.95, 21.16, 46.9 and 73.3% respectively. The prevalence of self-reported confirmed inhalant allergy was 13.1, 20.3, 31.0 and 33.3% respectively; house dust mite allergy was significantly higher in CRSwNPs (16%) compared to CRSsNPs (9%, p < 0.001). The prevalence of self- reported aspirin sensitivity was 2.26, 3.25, 9.61 and 40% respectively. The odds ratio for aspirin sensitivity amongst those with AFRS was 28.8 (CIs 9.9, 83.8) p < 0.001. Conclusions: The prevalence of asthma and allergy in CRS varies by phenoytype, with CRSwNPs and AFRS having a stronger association with both. Aspirin sensitivity has a highly significant association with AFRS. All of these comorbidities are significantly more prevalent than in non-CRS controls and strengthen the need for a more individualised approach to the combined airway
    corecore