1,076 research outputs found

    A Proposed Astronomy Learning Progression For Remote Telescope Observation

    Get PDF
    Providing meaningful telescope observing experiences for students who are deeply urban or distantly rural place-bound—or even daylight time-bound—has consistently presented a formidable challenge for astronomy educators.  For nearly 2 decades, the Internet has promised unfettered access for large numbers of students to conduct remote telescope observing, but it has only been in recent years that the technology has become readily available.  Now that this once fanciful possibility is becoming a reality, astronomy education researchers need a guiding theory on which to develop learning experiences.  As one departure point, we propose a potential learning progression anchored on one end with recognizing that stars visible at night have describable locations and predictable motions, and anchored at the other with distant robotic telescopes can be programmed to record specific astronomical data for later analysis

    Comparative ergonomic workflow and user experience analysis of MRI versus fluoroscopy-guided vascular interventions:an iliac angioplasty exemplar case study

    Get PDF
    Purpose A methodological framework is introduced to assess and compare a conventional fluoroscopy protocol for peripheral angioplasty with a new magnetic resonant imaging (MRI)-guided protocol. Different scenarios were considered during interventions on a perfused arterial phantom with regard to time-based and cognitive task analysis, user experience and ergonomics. Methods Three clinicians with different expertise performed a total of 43 simulated common iliac angioplasties (9 fluoroscopic, 34 MRI-guided) in two blocks of sessions. Six different configurations for MRI guidance were tested in the first block. Four of them were evaluated in the second block and compared to the fluoroscopy protocol. Relevant stages’ durations were collected, and interventions were audio-visually recorded from different perspectives. A cued retrospective protocol analysis (CRPA) was undertaken, including personal interviews. In addition, ergonomic constraints in the MRI suite were evaluated. Results Significant differences were found when comparing the performance between MRI configurations versus fluoroscopy. Two configurations [with times of 8.56 (0.64) and 9.48 (1.13) min] led to reduce procedure time for MRI guidance, comparable to fluoroscopy [8.49 (0.75) min]. The CRPA pointed out the main influential factors for clinical procedure performance. The ergonomic analysis quantified musculoskeletal risks for interventional radiologists when utilising MRI. Several alternatives were suggested to prevent potential low-back injuries. Conclusions This work presents a step towards the implementation of efficient operational protocols for MRI-guided procedures based on an integral and multidisciplinary framework, applicable to the assessment of current vascular protocols. The use of first-user perspective raises the possibility of establishing new forms of clinical training and education

    Manganese exposure in juvenile C57BL/6 mice increases glial inflammatory responses in the substantia nigra following infection with H1N1 influenza virus.

    Get PDF
    Infection with Influenza A virus can lead to the development of encephalitis and subsequent neurological deficits ranging from headaches to neurodegeneration. Post-encephalitic parkinsonism has been reported in surviving patients of H1N1 infections, but not all cases of encephalitic H1N1 infection present with these neurological symptoms, suggesting that interactions with an environmental neurotoxin could promote more severe neurological damage. The heavy metal, manganese (Mn), is a potential interacting factor with H1N1 because excessive exposure early in life can induce long-lasting effects on neurological function through inflammatory activation of glial cells. In the current study, we used a two-hit model of neurotoxin-pathogen exposure to examine whether exposure to Mn during juvenile development would induce a more severe neuropathological response following infection with H1N1 in adulthood. To test this hypothesis, C57BL/6 mice were exposed to MnCl2 in drinking water (50 mg/kg/day) for 30 days from days 21-51 postnatal, then infected intranasally with H1N1 three weeks later. Analyses of dopaminergic neurons, microglia and astrocytes in basal ganglia indicated that although there was no significant loss of dopaminergic neurons within the substantia nigra pars compacta, there was more pronounced activation of microglia and astrocytes in animals sequentially exposed to Mn and H1N1, as well as altered patterns of histone acetylation. Whole transcriptome Next Generation Sequencing (RNASeq) analysis was performed on the substantia nigra and revealed unique patterns of gene expression in the dual-exposed group, including genes involved in antioxidant activation, mitophagy and neurodegeneration. Taken together, these results suggest that exposure to elevated levels of Mn during juvenile development could sensitize glial cells to more severe neuro-immune responses to influenza infection later in life through persistent epigenetic changes

    Translational Cell & Animal Research in Space 1965-2011

    Get PDF
    Translational Cell and Animal Research (TCAR). For nearly 50 years, the NASA Space Biology Program has funded, and Ames Research Center (ARC) has managed, a robust program of fundamental research including studies using a wide range of animal cells, tissues and organisms. Much of this research was conducted on spacecraft in microgravity environments including diverse platforms such as: Gemini Spacecraft, US Biosatellites, Apollo Command Modules, Skylabs, Russian Biosatellites, NASA Space Shuttles, NASA/Mir, and most recently, the International Space Station (ISS). During the Space Shuttle Era (19812011), the science of space biology took an enormous step forward with 45 missions that afforded researchers with new opportunities to conduct systematic and complex experiments aimed at a deeper understanding of how life adapts to the space environment. Beginning in the 1990s, the products of these experiments, comprised of research summaries and rare, unused biospecimens, were collected and catalogued within the ARC Life Sciences Data Archiving Office, a branch of NASAs Life Sciences Data Archive (LSDA) managed from the NASA Johnson Spaceflight Center

    Incremented alkyl derivatives enhance collision induced glycosidic bond cleavage in mass spectrometry of disaccharides

    Get PDF
    Electrospray ionization and collision induced dissociation on a triple quadrupole mass spectrometer were used to determine the effect of spatial crowding of incremented alkyl groups of two anomeric pairs of peralkylated (methyl to pentyl) disaccharides (maltose/cellobiose and isomaltose/gentiobiose). Protonated molecules were generated which underwent extensive fragmentation under low energy conditions. For both the 1 → 4 and 1 → 6 α and β isomers, at comparable collision energies the methyl derivative exhibited the least fragmentation followed by ethyl, propyl, butyl, and pentyl. Collision energy is converted to rotational-vibrational modes in competition with bond cleavage, as represented by the slope of product/parent ion (D/P) ratio versus offset energy. Variable rotational freedom at the glycosidic linkage with incremented alkyl groups is hypothesized to be responsible for this effect. Discrimination of anomeric configuration was also assessed for these stereoiosmeric disaccharides. A systematic study showed that an increasing discrimination was attained for the 1 → 4 isomeric pair as the size of the derivative increased from methyl to pentyl. No anomeric discrimination was attained for the 1 → 6 isomeric pair. Parent and product ion scans confirmed the consistency of fragmentation pathways among derivatives. Chem-X and MM3 molecular modeling programs were used to obtain minimum energy structures and freedom of motion volumes for the permethylated disaccharides. The modeling results correlated with the fragmentation ratios obtained in the mass spectrometer giving strong indication that the collision induced spectra are dependent on the freedom of rotational motion around the glycosidic bond. © 2003 American Society for Mass Spectrometry

    The Design and Validation of the Quantum Mechanics Conceptual Survey

    Full text link
    The Quantum Mechanics Conceptual Survey (QMCS) is a 12-question survey of students' conceptual understanding of quantum mechanics. It is intended to be used to measure the relative effectiveness of different instructional methods in modern physics courses. In this paper we describe the design and validation of the survey, a process that included observations of students, a review of previous literature and textbooks and syllabi, faculty and student interviews, and statistical analysis. We also discuss issues in the development of specific questions, which may be useful both for instructors who wish to use the QMCS in their classes and for researchers who wish to conduct further research of student understanding of quantum mechanics. The QMCS has been most thoroughly tested in, and is most appropriate for assessment of (as a posttest only), sophomore-level modern physics courses. We also describe testing with students in junior quantum courses and graduate quantum courses, from which we conclude that the QMCS may be appropriate for assessing junior quantum courses, but is not appropriate for assessing graduate courses. One surprising result of our faculty interviews is a lack of faculty consensus on what topics should be taught in modern physics, which has made designing a test that is valued by a majority of physics faculty more difficult than expected.Comment: Submitted to Physical Review Special Topics: Physics Education Researc

    Characterising B cell numbers and memory B cells in HIV infected and uninfected Malawian adults

    Get PDF
    BACKGROUND: Untreated human immunodeficiency virus (HIV) disease disrupts B cell populations causing reduced memory and reduced naïve resting B cells leading to increases in specific co-infections and impaired responses to vaccines. To what extent antiretroviral treatment reverses these changes in an African population is uncertain. METHODS: A cross-sectional study was performed. We recruited HIV-uninfected and HIV-infected Malawian adults both on and off antiretroviral therapy attending the Queen Elizabeth Central hospital in Malawi. Using flow cytometry, we enumerated B cells and characterized memory B cells and compared these measurements by the different recruitment groups. RESULTS: Overall 64 participants were recruited - 20 HIV uninfected (HIV-), 30 HIV infected ART naïve (HIV+N) and 14 HIV-infected ART treated (HIV+T). ART treatment had been taken for a median of 33 months (Range 12-60 months). Compared to HIV- the HIV+N adults had low absolute number of naïve resting B cells (111 vs. 180 cells/μl p = 0.008); reduced memory B cells (27 vs. 51 cells/μl p = 0.0008). The HIV+T adults had B-cell numbers similar to HIV- except for memory B cells that remained significantly lower (30 vs. 51 cells/μl p = 0.02). In the HIV+N group we did not find an association between CD4 count and B cell numbers. CONCLUSIONS: HIV infected Malawian adults have abnormal B-cell numbers. Individuals treated with ART show a return to normal in B-cell numbers but a persistent deficit in the memory subset is noted. This has important implications for long term susceptibility to co-infections and should be evaluated further in a larger cohort study
    • …
    corecore