17 research outputs found

    Spin-Tunnel Investigation of a 1/28-Scale Model of the NASA F-18 High Alpha Research Vehicle (HARV) with and without Vertical Tails

    Get PDF
    An investigation was conducted in the NASA Langley 20-Foot Vertical Spin Tunnel to determine the developed spin and spin-recovery characteristics of a 1/28-scale, free-spinning model of the NASA F-18 HARV (High Alpha Research Vehicle) airplane that can configured with and without the vertical tails installed. The purpose of the test was to determine what effects, if any, the absence of vertical tails (and rudders) had on the spin and spin-recovery capabilities of the HARV. The model was ballasted to dynamically represent the full-scale airplane at an altitude of 25,000 feet. Erect and inverted spin tests with symmetric mass loadings were conducted with the free-spinning model. The model results indicate that the basic airplane with vertical tails installed (with unaugmented control system) will exhibit fast, flat erect and inverted spins from which acceptable recoveries can be made. Removing the vertical tails had little effect on the erect spin mode, but did degrade recoveries from erect spins. In contrast, inverted spins without the vertical tails were significantly more severe than those with the tails installed

    Low-Speed Flight Dynamic Tests and Analysis of the Orion Crew Module Drogue Parachute System

    Get PDF
    A test of a dynamically scaled model of the NASA Orion Crew Module (CM) with drogue parachutes was conducted in the NASA-Langley 20-Foot Vertical Spin Tunnel. The primary test objective was to assess the ability of the Orion Crew Module drogue parachute system to adequately stabilize the CM and reduce angular rates at low subsonic Mach numbers. Two attachment locations were tested: the current design nominal and an alternate. Experimental results indicated that the alternate attachment location showed a somewhat greater tendency to attenuate initial roll rate and reduce roll rate oscillations than the nominal location. Comparison of the experimental data to a Program To Optimize Simulated Trajectories (POST II) simulation of the experiment yielded results for the nominal attachment point that indicate differences between the low-speed pitch and yaw damping derivatives in the aerodynamic database and the physical model. Comparisons for the alternate attachment location indicate that riser twist plays a significant role in determining roll rate attenuation characteristics. Reevaluating the impact of the alternate attachment points using a simulation modified to account for these results showed significantly reduced roll rate attenuation tendencies when compared to the original simulation. Based on this modified simulation the alternate attachment point does not appear to offer a significant increase in allowable roll rate over the nominal configuration

    Multi-Mission Earth Vehicle Subsonic Dynamic Stability Testing and Analyses

    Get PDF
    Multi-Mission Earth Entry Vehicles (MMEEVs) are blunt-body vehicles designed with the purpose of transporting payloads from outer space to the surface of the Earth. To achieve high-reliability and minimum weight, MMEEVs avoid use of limited-reliability systems, such as parachutes, retro-rockets, and reaction control systems and rely on the natural aerodynamic stability of the vehicle throughout the Entry, Descent, and Landing (EDL) phase of flight. The Multi-Mission Systems Analysis for Planetary Entry (M-SAPE) parametric design tool is used to facilitate the design of MMEEVs for an array of missions and develop and visualize the trade space. Testing in NASA Langley?s Vertical Spin Tunnel (VST) was conducted to significantly improve M-SAPE?s subsonic aerodynamic models. Vehicle size and shape can be driven by entry flight path angle and speed, thermal protection system performance, terminal velocity limitations, payload mass and density, among other design parameters. The objectives of the VST testing were to define usable subsonic center of gravity limits, and aerodynamic parameters for 6-degree-of-freedom (6-DOF) simulations, for a range of MMEEV designs. The range of MMEEVs tested was from 1.8m down to 1.2m diameter. A backshell extender provided the ability to test a design with a much larger payload for the 1.2m MMEEV

    Drogue Parachute Effects on the Orion Crew Module Stability

    Get PDF
    A forced oscillation test of the Orion Crew Module (CM) was conducted in the Langley 20-Foot Vertical Spin Tunnel. The objective of the test was to quantify the rate damping characteristics of the CM-drogue chute system. Numerous configurations were tested to measure the influence of the chutes on the CM dynamic aerodynamics and, conversely, the influence of the CM on drogue performance. Results show that the CM-drogue system is well-damped at all combinations of frequency, amplitude, and Strouhal number. The wake of the CM significantly reduces the drogue chute riser line force, and the drogues have little upstream influence on the CM aerodynamics. These results are being used to improve simulation model fidelity of CM flight with drogues deployed, which has been identified by the project as key to a successful Orion Critical Design Review

    Overview of Dynamic Test Techniques for Flight Dynamics Research at NASA LaRC (Invited)

    Get PDF
    An overview of dynamic test techniques used at NASA Langley Research Center on scale models to obtain a comprehensive flight dynamics characterization of aerospace vehicles is presented. Dynamic test techniques have been used at Langley Research Center since the 1920s. This paper will provide a partial overview of the current techniques available at Langley Research Center. The paper will discuss the dynamic scaling necessary to address the often hard-to-achieve similitude requirements for these techniques. Dynamic test techniques are categorized as captive, wind tunnel single degree-of-freedom and free-flying, and outside free-flying. The test facilities, technique specifications, data reduction, issues and future work are presented for each technique. The battery of tests conducted using the Blended Wing Body aircraft serves to illustrate how the techniques, when used together, are capable of characterizing the flight dynamics of a vehicle over a large range of critical flight conditions

    National Aeronautics and Space Administration

    No full text
    An investigation was conducted in the NASA Langley 20-Foot Vertical Spin Tunnel to determine the developed spin and spin-recovery characteristics of a 1/28-scale, free-spinning model of the NASA F-18 HARV (High Alpha Research Vehicle) airplane that can be configured with and without the vertical tails installed. The purpose of the test was to determine what effects, if any, the absence of vertical tails (and rudders) had on the spin and spin-recovery capabilities of the HARV. The model was ballasted to dynamically represent the full-scale airplane at an altitude of 25 000 feet. Erect and inverted spin tests with symmetric mass loadings were conducted with the free-spinning model. The model results indicate that the basic airplane with vertical tails installed (with unaugmented control system) will exhibit fast, flat erect and inverted spins from which acceptable recoveries can be made. Removing the vertical tails had little effect on the erect spin mode, but did degrade recoveries from erect spins. In contrast, inverted spins without the vertical tails were significantly more severe than those with the tails installed

    NASA Contractor Report 201687

    No full text
    An investigation was conducted in t h e NASA Langley 20-Foot Vertical Spin Tunnel to determine the developed spin and spin-recovery characteristics of a 1/28-scale, free-spinning model of the NASA F-18 HARV (High Alpha Research Vehicle) airplane that can be configured with and without the vertical tails installed. The purpose of the test was to determine what effects, if any, the absence of vertical tails (and rudders) had on the spin and spin-recovery capabilities of the HARV. The model was ballasted to dynamically represent the full-scale airplane at an altitude of 25 000 feet. Erect and inverted spin tests with symmetric mass loadings were conducted with the free-spinning model. The model results indicate that the basic airplane with vertical tails installed (with unaugmented control system) will exhibit fast, flat erect and inverted spins from which acceptable recoveries can be made. Removing the vertical tails had little effect on the erect spin mode, but did degrade recoveries fr..

    COMSAC: Computational Methods for Stability and Control

    No full text
    The unprecedented advances being made in computational fluid dynamic (CFD) technology have demonstrated the powerful capabilities of codes in applications to civil and military aircraft. Used in conjunction with wind-tunnel and flight investigations, many codes are now routinely used by designers in diverse applications such as aerodynamic performance predictions and propulsion integration. Typically, these codes are most reliable for attached, steady, and predominantly turbulent flows. As a result of increasing reliability and confidence in CFD, wind-tunnel testing for some new configurations has been substantially reduced in key areas, such as wing trade studies for mission performance guarantees. Interest is now growing in the application of computational methods to other critical design challenges. One of the most important disciplinary elements for civil and military aircraft is prediction of stability and control characteristics. CFD offers the potential for significantly increasing the basic understanding, prediction, and control of flow phenomena associated with requirements for satisfactory aircraft handling characteristics

    Introduction to Computational Methods for Stability and Control (COMSAC)

    No full text
    This Symposium is intended to bring together the often distinct cultures of the Stability and Control (S&C) community and the Computational Fluid Dynamics (CFD) community. The COMSAC program is itself a new effort by NASA Langley to accelerate the application of high end CFD methodologies to the demanding job of predicting stability and control characteristics of aircraft. This talk is intended to set the stage for needing a program like COMSAC. It is not intended to give details of the program itself. The topics include: 1) S&C Challenges; 2) Aero prediction methodology; 3) CFD applications; 4) NASA COMSAC planning; 5) Objectives of symposium; and 6) Closing remarks

    COMSAC: Visions and Potential Program Content

    No full text
    The intent of this talk is to present the stability and control (S and C) priorities as seen by the Langley team. No roadmaps or 5 year plans will be presented. We are actively soliciting your feedback, your ideas, and your help in building and executing this program. The outline of this viewgraph presentation includes: 1) Background; 2) NASA Constraints and Priorities; 3) Potential Program Content (high priority issues, approach); 4) Prepared Critiques; 5) Comments by Attendees; 6) Closing Comments
    corecore