69 research outputs found

    Structure and hydration of membranes embedded with voltage-sensing domains.

    Get PDF
    Despite the growing number of atomic-resolution membrane protein structures, direct structural information about proteins in their native membrane environment is scarce. This problem is particularly relevant in the case of the highly charged S1-S4 voltage-sensing domains responsible for nerve impulses, where interactions with the lipid bilayer are critical for the function of voltage-activated ion channels. Here we use neutron diffraction, solid-state nuclear magnetic resonance (NMR) spectroscopy and molecular dynamics simulations to investigate the structure and hydration of bilayer membranes containing S1-S4 voltage-sensing domains. Our results show that voltage sensors adopt transmembrane orientations and cause a modest reshaping of the surrounding lipid bilayer, and that water molecules intimately interact with the protein within the membrane. These structural findings indicate that voltage sensors have evolved to interact with the lipid membrane while keeping energetic and structural perturbations to a minimum, and that water penetrates the membrane, to hydrate charged residues and shape the transmembrane electric field

    Proton-coupled dynamics in lactose permease

    Get PDF
    Lactose permease of Escherichia coli (LacY) catalyzes symport of a galactopyranoside and an H+ via an alternating access mechanism. The transition from an inward- to an outward-facing conformation of LacY involves sugar-release followed by deprotonation. Because the transition depends intimately upon the dynamics of LacY in a bilayer environment, molecular dynamics (MD) simulations may be the only means of following the accompanying structural changes in atomic detail. Here, we describe MD simulations of wild- type apo LacY in phosphatidylethanolamine (POPE) lipids that features two protonation states of the critical Glu325. While the protonated system displays configurational stability, deprotonation of Glu325 causes significant structural rearrangements that bring into proximity side chains important for H+ translocation and sugar binding and closes the internal cavity. Moreover, protonated LacY in phosphatidylcholine (DMPC) lipids shows that the observed dynamics are lipid-dependent. Together, the simulations describe early dynamics of the inward-to-outward transition of LacY that agree well with experimental data

    Separating Instability from Aggregation Propensity in γS-Crystallin Variants

    Get PDF
    AbstractMolecular dynamics (MD) simulations, circular dichroism (CD), and dynamic light scattering (DLS) measurements were used to investigate the aggregation propensity of the eye-lens protein γS-crystallin. The wild-type protein was investigated along with the cataract-related G18V variant and the symmetry-related G106V variant. The MD simulations suggest that local sequence differences result in dramatic differences in dynamics and hydration between these two apparently similar point mutations. This finding is supported by the experimental measurements, which show that although both variants appear to be mostly folded at room temperature, both display increased aggregation propensity. Although the disease-related G18V variant is not the most strongly destabilized, it aggregates more readily than either the wild-type or the G106V variant. These results indicate that γS-crystallin provides an excellent model system for investigating the role of dynamics and hydration in aggregation by locally unfolded proteins

    Allosteric Mechanism of Water Channel Gating by Ca2+–calmodulin

    Get PDF
    Calmodulin (CaM) is a universal regulatory protein that communicates the presence of calcium to its molecular targets and correspondingly modulates their function. This key signaling protein is important for controlling the activity of hundreds of membrane channels and transporters. However, our understanding of the structural mechanisms driving CaM regulation of full-length membrane proteins has remained elusive. In this study, we determined the pseudo-atomic structure of full-length mammalian aquaporin-0 (AQP0, Bos Taurus) in complex with CaM using electron microscopy to understand how this signaling protein modulates water channel function. Molecular dynamics and functional mutation studies reveal how CaM binding inhibits AQP0 water permeability by allosterically closing the cytoplasmic gate of AQP0. Our mechanistic model provides new insight, only possible in the context of the fully assembled channel, into how CaM regulates multimeric channels by facilitating cooperativity between adjacent subunits

    Arginine in Membranes: The Connection Between Molecular Dynamics Simulations and Translocon-Mediated Insertion Experiments

    Get PDF
    Several laboratories have carried out molecular dynamics (MD) simulations of arginine interactions with lipid bilayers and found that the energetic cost of placing arginine in lipid bilayers is an order of magnitude greater than observed in molecular biology experiments in which Arg-containing transmembrane helices are inserted across the endoplasmic reticulum membrane by the Sec61 translocon. We attempt here to reconcile the results of the two approaches. We first present MD simulations of guanidinium groups alone in lipid bilayers, and then, to mimic the molecular biology experiments, we present simulations of hydrophobic helices containing single Arg residues at different positions along the helix. We discuss the simulation results in the context of molecular biology results and show that the energetic discrepancy is reduced, but not eliminated, by considering free energy differences between Arg at the interface and at the center of the model helices. The reduction occurs because Arg snorkeling to the interface prevents Arg from residing in the bilayer center where the energetic cost of desolvation is highest. We then show that the problem with MD simulations is that they measure water-to-bilayer free energies, whereas the molecular biology experiments measure the energetics of partitioning from translocon to bilayer, which raises the fundamental question of the relationship between water-to-bilayer and water-to-translocon partitioning. We present two thermodynamic scenarios as a foundation for reconciliation of the simulation and molecular biology results. The simplest scenario is that translocon-to-bilayer partitioning is independent of water-to-bilayer partitioning; there is no thermodynamic cycle connecting the two paths

    Molecular Dynamics Simulations of a Pulmonary Surfactant Protein B Peptide in a Lipid Monolayer

    Get PDF
    Pulmonary surfactant is a complex mixture of lipids and proteins that lines the air/liquid interface of the alveolar hypophase and confers mechanical stability to the alveoli during the breathing process. The desire to formulate synthetic mixtures for low-cost prophylactic and therapeutic applications has motivated the study of the specific roles and interactions of the different components. All-atom molecular dynamics simulations were carried out on a model system composed of a monolayer of palmitic acid (PA) and a surfactant protein B peptide, SP-B(1–25). A detailed structural characterization as a function of the lipid monolayer specific area revealed that the peptide remains inserted in the monolayer up to values of specific area corresponding to an untilted condensed phase of the the pure palmitic acid monolayer. The system remains stable by altering the conformational order of both the anionic lipid monolayer and the peptide secondary structure. Two elements appear to be key for the constitution of this phase: an electrostatic interaction between the cationic peptide residues with the anionic headgroups, and an exclusion of the aromatic residues on the hydrophobic end of the peptide from the hydrophilic and aqueous regions

    Gating energetics of a voltage-dependent K(+) channel pore domain

    No full text
    We used targeted molecular dynamics, informed by experimentally determined inter-atomic distances defining the pore region of open and closed states of the KvAP voltage-gated potassium channel, to generate a gating pathway of the pore domain in the absence of the voltage-sensing domains. We then performed umbrella sampling simulations along this pathway to calculate a potential of mean force that describes the free energy landscape connecting the closed and open conformations of the pore domain. The resulting energetic landscape displays three minima, corresponding to stable open, closed, and intermediate conformations with roughly similar stabilities. We found that the extent of hydration of the interior of the pore domain could influence the free energy landscape for pore opening/closing. © 2017 Wiley Periodicals, Inc
    corecore