7,672 research outputs found

    QCD and QED Corrections to Light-by-Light Scattering

    Get PDF
    We present the QCD and QED corrections to the fermion-loop contributions to light-by-light scattering, gamma gamma to gamma gamma, in the ultrarelativistic limit where the kinematic invariants are much larger than the masses of the charged fermions.Comment: 17 pages, 3 figure files, JHEP styl

    Testing the SUSY-QCD Yukawa coupling in a combined LHC/ILC analysis

    Get PDF
    In order to establish supersymmetry (SUSY) at future colliders, the identity of gauge couplings and the corresponding Yukawa couplings between gauginos, sfermions and fermions needs to be verified. Here a first phenomenological study for determining the Yukawa coupling of the SUSY-QCD sector is presented, using a method which combines information from LHC and ILC.Comment: 5pp, slightly expanded version of contributions to the Proc. of the Linear Collider Workshop (LCWS 06), Bangalore, India, 9-13 March 2006, and the Proc. of the 14th International Conference on Supersymmetry and the Unification of Fundamental Interactions (SUSY 06), Irvine, California, USA, 12-17 June 200

    Abrupt field-induced transition triggered by magnetocaloric effect in phase-separated manganites

    Get PDF
    The occurrence at low temperatures of an ultrasharp field-induced transition in phase separated manganites is analyzed. Experimental results show that magnetization and specific heat step-like transitions below 5 K are correlated with an abrupt change of the sample temperature, which happens at a certain critical field. This temperature rise, a magnetocaloric effect, is interpreted as produced by the released energy at the transition point, and is the key to understand the existence of the abrupt field-induced transition. A qualitative analysis of the results suggests the existence of a critical growing rate of the ferromagnetic phase, beyond which an avalanche effect is triggered.Comment: 6 pages, 4 figures included. Acepted for publication in Phys. Rev.

    Permeability of the blood-brain barrier through the phases of ischaemic stroke and relation with clinical outcome: protocol for a systematic review

    Get PDF
    Introduction: Ischaemic stroke is the most prevalent type of stroke and is characterised by a myriad of pathological events triggered by a vascular arterial occlusion. Disruption of the blood-brain barrier (BBB) is a key pathological event that may lead to fatal outcomes. However, it seems to follow a multiphasic pattern that has been associated with distinct biological substrates and possibly contrasting outcomes. Addressing the BBB permeability (BBBP) along the different phases of stroke through imaging techniques could lead to a better understanding of the disease, improved patient selection for specific treatments and development of new therapeutic modalities and delivery methods. This systematic review will aim to comprehensively summarise the existing evidence regarding the evolution of the BBBP values during the different phases of an acute ischaemic stroke and correlate this event with the clinical outcome of the patient. Methods and analysis: We will conduct a computerised search on Medline, EMBASE, Cochrane Central Register of Controlled Trials, Scopus and Web of Science. In addition, grey literature and ClinicalTrials.gov will be scanned. We will include randomised controlled trials, cohort, cross-sectional and case-controlled studies on humans that quantitatively assess the BBBP in stroke. Retrieved studies will be independently reviewed by two authors and any discrepancies will be resolved by consensus or with a third reviewer. Reviewers will extract the data and assess the risk of bias of the selected studies. If possible, data will be combined in a quantitative meta-analysis following the guidelines provided by Cochrane Handbook for Systematic Reviews of Interventions. We will assess cumulative evidence using the Grading of Recommendations, Assessment, Development and Evaluation approach. Ethics and dissemination: Ethical approval is not needed. All data used for this work are publicly available. The result obtained from this work will be published in a peer-reviewed journal and disseminated in relevant conferences.info:eu-repo/semantics/publishedVersio

    Ion microprobe assessment of the heterogeneity of Mg/Ca, Sr/Ca and Mn/Ca ratios in <i>Pecten maximus</i> and <i>Mytilus edulis</i> (bivalvia) shell calcite precipitated at constant temperature

    Get PDF
    Small-scale heterogeneity of biogenic carbonate elemental composition can be a significant source of error in the accurate use of element/Ca ratios as geochemical proxies. In this study ion microprobe (SIMS) profiles showed significant small-scale variability of Mg/Ca, Sr/Ca and Mn/Ca ratios in new shell calcite of the marine bivalves <i>Pecten maximus</i> and <i>Mytilus edulis</i> that was precipitated during a constant-temperature culturing experiment. Elevated Mg/Ca, Sr/Ca and Mn/Ca ratios were found to be associated with the deposition of elaborate shell features, i.e. a shell surface stria in <i>P. maximus</i> and surface shell disturbance marks in both species, the latter a common occurrence in bivalve shells. In both species the observed small-scale elemental heterogeneity most likely was not controlled by variable transport of ions to the extra-pallial fluid, but by factors such as the influence of shell organic content and/or crystal size and orientation, the latter reflecting conditions at the shell crystal-solution interface. In the mid and innermost regions of the <i>P. maximus</i> shell the lack of significant small-scale variation of Mg/Ca ratios, which is consistent with growth at constant temperature, suggest a potential application as a palaeotemperature proxy. Cross-growth band element/Ca ratio profiles in the interior of bivalve shells may provide more promising palaeo-environmental tools than sampling from the outer region of bivalve shells
    corecore