133 research outputs found

    Açaí (Euterpe oleracea martius) supplementation improves oxidative stress biomarkers in liver tissue of dams fed a high-fat diet and increases antioxidant enzymes’ gene expression in offspring.

    Get PDF
    Lipids excess from an uterine environment can increase free radicals production of and thus induce oxidative status imbalance, a key factor for progression of non-alcoholic fatty liver disease (NAFLD) in offspring. Food antioxidant components in maternal diet may play an important role in preventing offspring metabolic disorders. The objective of the study was to evaluate the effects of açaí pulp supplementation on maternal high-fat diet, by assessing activity and expression of antioxidant enzymes and biomarkers of oxidative stress in the liver. Female Fisher rats were divided into four groups and fed a control diet (C), a high-fat diet (HF), a control diet supplemented with açaí (CA) and a high-fat diet supplemented with açaí (HFA) before mating, during gestation and lactation. The effects of açaí supplementation on oxidative stress biomarkers and antioxidant enzymes expression were evaluated in dams and male offspring after weaning. HFA diet increased body weight in dams, however reduced absolute and relative liver weight. There was a reduction in liver biomarkers of oxidative stress, malondialdehyde and carbonyl protein, as well as in catalase, glutathione peroxidase and superoxide dismutase activity. In offspring, HFA diet reduced liver weight and increased Gpx1, Gpx4 and Sod1 mRNA expression. These results suggest that açaí is able to restore redox status, preventing oxidative damage in dams by a direct mechanism and to promote beneficial effects on expression of antioxidant defences related genes in offspring

    Açaí (Euterpe oleracea Martius) supplementation in the diet during gestation and lactation attenuates liver steatosis in dams and protects offspring.

    Get PDF
    Purpose: Maternal high-fat diet affects offspring and can induce metabolic disorders such as non-alcoholic fatty liver disease (NAFLD). New therapeutic strategies are being investigated as way to prevent or attenuate this condition. The objective of this study was to evaluate the effect of açaí supplementation in the maternal high-fat diet on dams and offspring lipid metabolism. Methods: Female Fisher rats were divided in four groups and fed a control diet (C), a high-fat diet (HF), an açaí supplemented diet (CA) and a high-fat diet supplemented with açaí (HFA) 2 weeks before mating, during gestation and lactation. The effects of açaí were evaluated in the male offspring after birth (P1) and weaning (P21). Results: HFA reduced relative liver weight, fat and cholesterol liver content in dams and improved liver steatosis as confirmed by histological analyses. HFA increased serum cholesterol and expression of Srebpf1 and Fasn genes. In offspring, HFA decreased relative liver weight, and serum cholesterol only in P21. An increase in the Sirt1, Srebpf1 and Fasn genes expression was observed in P21. Conclusions: These results suggest that açaí supplementation may attenuate NAFLD in dams and protect offspring from the detrimental effects of lipid excess from a maternal high-fat diet

    Combining high pressure and electric fields towards nannochloropsis oculata eicosapentaenoic acid-rich extracts

    Get PDF
    Nannochloropsis oculata is naturally rich in eicosapentaenoic acid (EPA). To turn this microalga into an economically viable source for commercial applications, extraction efficiency must be achieved. Pursuing this goal, emerging technologies such as high hydrostatic pressure (HHP) and moderate electric fields (MEF) were tested, aiming to increase EPA accessibility and subsequent extraction yields. The innovative approach used in this study combined these technologies and associated tailored, less hazardous different solvent mixtures (SM) with distinct polarity indexes. Although the classical Folch SM with chloroform: methanol (PI 4.4) provided the highest yield concerning total lipids (166.4 mglipid/gbiomass), diethyl ether: ethanol (PI 3.6) presented statistically higher values in terms of EPA per biomass, corresponding to 1.3-fold increase. When SM were used in HHP and MEF, neither technology independently improved EPA extraction yields, although the sequential combination of technologies did result in 62% increment in EPA extraction. Overall, the SM and extraction methodologies tested (HHP—200 MPa, 21 °C, 15 min, followed by MEF processing at 40 °C, 15 min) enabled increased EPA extraction yields from wet N. oculata biomass. These findings are of high relevance for the food and pharmaceutical industries, providing viable alternatives to the “classical” extraction methodologies and solvents, with increased yields and lower environmental impact.info:eu-repo/semantics/publishedVersio

    A total transcriptome profiling method for plasma-derived extracellular vesicles: applications for liquid biopsies

    Get PDF
    Extracellular vesicles (EVs) are key mediators of intercellular communication. Part of their biological effects can be attributed to the transfer of cargos of diverse types of RNAs, which are promising diagnostic and prognostic biomarkers. EVs found in human biofluids are a valuable source for the development of minimally invasive assays. However, the total transcriptional landscape of EVs is still largely unknown. Here we develop a new method for total transcriptome profiling of plasma-derived EVs by next generation sequencing (NGS) from limited quantities of patient-derived clinical samples, which enables the unbiased characterization of the complete RNA cargo, including both small- and long-RNAs, in a single library preparation step. This approach was applied to RNA extracted from EVs isolated by ultracentrifugation from the plasma of five healthy volunteers. Among the most abundant RNAs identified we found small RNAs such as tRNAs, miRNAs and miscellaneous RNAs, which have largely unknown functions. We also identified protein-coding and long noncoding transcripts, as well as circular RNA species that were also experimentally validated. This method enables, for the first time, the full spectrum of transcriptome data to be obtained from minute patient-derived samples, and will therefore potentially allow the identification of cell-to-cell communication mechanisms and biomarkers.Fundacao de Amparo a Pesquisa do Estado de Sao Paulo (FAPESP)Gillson-Longenbaugh FoundationNational Institutes of Health (NIH/NCATS) through the NIH Common Fund, Office of Strategic Coordination (OSC)AC Camargo Canc Ctr, Lab Med Genom, Sao Paulo, SP, BrazilAC Camargo Canc Ctr, Lab Computat Biol, Sao Paulo, SP, BrazilUniv Sao Paulo, Inst Biomed Sci, Dept Cell & Dev Biol, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Electron Microscopy Ctr, Sao Paulo, SP, BrazilUniv Texas MD Anderson Canc Ctr, Dept Expt Therapeut, Houston, TX 77030 USAUniv Texas MD Anderson Canc Ctr, Ctr RNA Interference & Non Coding RNAs, Houston, TX 77030 USAUniv New Mexico, Comprehens Canc Ctr, Albuquerque, NM 87131 USAUniv New Mexico, Sch Med, Div Hematol Oncol, Dept Internal Med, Albuquerque, NM 87131 USAUniv New Mexico, Sch Med, Div Mol Med, Dept Internal Med, Albuquerque, NM 87131 USARockefeller Univ, Lab Mol Immunol, 1230 York Ave, New York, NY 10021 USAFMUSP, Lab Neurociencias Alzira Denise Hertzog Silva LIM, Inst Psiquiatria, Sao Paulo, SP, BrazilUniv Fed Sao Paulo, Electron Microscopy Ctr, Sao Paulo, SP, BrazilFAPESP: 2011/09172-3FAPESP: 2014/26897-0Web of Scienc

    Antioxidant compounds recovery from Juçara residue by thermal assisted extraction

    Get PDF
    This study aimed to recover bioactive compounds by solid-liquid extraction from the agro-industrial residue obtained during juçara fruits processing into pulp. A preliminary study using different solvents (methanol, ethanol and water) indicated ethanol in aqueous solution as the best solvent for antioxidants recovery. Then, a Box-Behnken design was applied considering as independent variables the solvent composition (3070% ethanol in water), temperature (3070 °C) and time (3060 min), in order to evaluate the effects of these factors on antioxidant activity in juçara extract. Results showed that the extracts with higher antioxidant activity were obtained using 30% ethanol at 70 °C for 60 min; measurements included ABTS and DPPH assays, determination of total phenolic content and total monomeric anthocyanins. Furthermore, the effect of pH in antioxidants recovery was evaluated. For this purpose, the 30% ethanol solution was acidified to pH 1 and 2 with HCl. Principal component analysis showed the formation of three distinct groups: one characterized by high bioactive compounds content (pH 1.0), another with superior antioxidant activity (pH 5.75, non-acidified), and finally the group at pH 2 presenting the worst concentrations in the evaluated responses. HPLC analysis showed the presence of cyanidin-3-O-rutinoside and cyanidin-3-O-glucoside in the extracts. Therefore, the conventional solid-liquid extraction using renewable solvent can be successfully applied to recover bioactive compounds from juçara residue, which can be used by different food industries.The authors gratefully acknowledge the institutions: Coordenação de Aperfeiçoamento Pessoal deEnsinoSuperior (CAPES), Universidade Federal do Rio de Janeiro, Embrapa Agroindústria de Alimentos and University of Minho by the financial support of the research work and Juçaí Alimentos for the juçara residue. Ricardo N. Pereira gratefully acknowledge to Portuguese Foundation for Science and Technology (FCT) the financial grant with reference SFRH/BPD/ 81887/2011.info:eu-repo/semantics/publishedVersio
    corecore