2,782 research outputs found

    Role of Single Defects in Electronic Transport through Carbon Nanotube Field-Effect Transistors

    Full text link
    The influence of defects on electron transport in single-wall carbon nanotube field effect transistors (CNFETs) is probed by combined scanning gate microscopy (SGM) and scanning impedance microscopy (SIM). SGM reveals a localized field effect at discrete defects along the CNFET length. The depletion surface potential of individual defects is quantified from the SGM-imaged radius of the defect as a function of tip bias voltage. This provides a measure of the Fermi level at the defect with zero tip voltage, which is as small as 20 meV for the strongest defects. The effect of defects on transport is probed by SIM as a function of backgate and tip-gate voltage. When the backgate voltage is set so the CNFET is "on" (conducting), SIM reveals a uniform potential drop along its length, consistent with diffusive transport. In contrast, when the CNFET is "off", potential steps develop at the position of depleted defects. Finally, high-resolution imaging of a second set of weak defects is achieved in a new "tip-gated" SIM mode.Comment: to appear in Physical Review Letter

    Tip-gating Effect in Scanning Impedance Microscopy of Nanoelectronic Devices

    Full text link
    Electronic transport in semiconducting single-wall carbon nanotubes is studied by combined scanning gate microscopy and scanning impedance microscopy (SIM). Depending on the probe potential, SIM can be performed in both invasive and non-invasive mode. High-resolution imaging of the defects is achieved when the probe acts as a local gate and simultaneously an electrostatic probe of local potential. A class of weak defects becomes observable even if they are located in the vicinity of strong defects. The imaging mechanism of tip-gating scanning impedance microscopy is discussed.Comment: 11 pages, 3 figures, to be published in Appl. Phys. Let

    Carbon nanotubes as a tip calibration standard for electrostatic scanning probe microscopies

    Full text link
    Scanning Surface Potential Microscopy (SSPM) is one of the most widely used techniques for the characterization of electrical properties at small dimensions. Applicability of SSPM and related electrostatic scanning probe microscopies for imaging of potential distributions in active micro- and nanoelectronic devices requires quantitative knowledge of tip surface contrast transfer. Here we demonstrate the utility of carbon-nanotube-based circuits to characterize geometric properties of the tip in the electrostatic scanning probe microscopies (SPM). Based on experimental observations, an analytical form for the differential tip-surface capacitance is obtained.Comment: 14 pages, 4 figure

    Initial Populations of Black Holes in Star Clusters

    Full text link
    Using an updated population synthesis code we study the formation and evolution of black holes (BHs) in young star clusters following a massive starburst. This study continues and improves on the initial work described by Belczynski, Sadowski & Rasio (2004). In our new calculations we account for the possible ejections of BHs and their progenitors from clusters because of natal kicks imparted by supernovae and recoil following binary disruptions. The results indicate that the properties of both retained BHs in clusters and ejected BHs (forming a field population) depend sensitively on the depth of the cluster potential. In particular, most BHs ejected from binaries are also ejected from clusters with central escape speeds Vesc < 100 km/s. Conversely, most BHs remaining in binaries are retained by clusters with Vesc > 50 km/s. BHs from single star evolution are also affected significantly: about half of the BHs originating from primordial single stars are ejected from clusters with Vesc < 50 km/s. Our results lay a foundation for theoretical studies of the formation of BH X-ray binaries in and around star clusters, including possible ultra-luminous sources, as well as merging BH--BH binaries detectable with future gravitational-wave observatories.Comment: 35 pages, 8 tables, 17 figures; resubmitted to ApJ (revised version

    Naturally occurring bacteriophages lyse a large proportion of canine and feline uropathogenic Escherichia coli isolates in vitro

    Get PDF
    We investigated the feasibility of bacteriophage therapy to combat canine and feline Escherichia coli urinary tract infections (UTIs) by testing the in vitro lytic ability of 40 naturally occurring bacteriophages on 53 uropathogenic E. coli (UPEC). The mean number of UPEC strains lysed by an individual bacteriophage was 21/53 (40%, range 17–72%). In total, 50/53 (94%) of the UPEC strains were killed by one or more of the bacteriophages. Ten bacteriophages lysed P51% of UPEC strains individually and 92% of UPEC strains as a group. Electron microscopy and DNA sequencing of 5 ‘promising’ bacteriophages revealed that 4 bacteriophages belonged to the lytic T4-like genus, while one displayed morphologic similarity to temperate P2-like bacteriophages. Overall, these results indicate that the majority of UPEC are susceptible to lysis by naturally occurring bacteriophages. Thus, bacteriophages show promise as therapeutic agents for treatment of canine and feline E. coli UTIs

    Constraints on post-depositional isotope modifications in East Antarctic firn from analysing temporal changes of isotope profiles

    Get PDF
    The isotopic composition of water in ice sheets is extensively used to infer past climate changes. In low-accumulation regions their interpretation is, however, challenged by poorly constrained effects that may influence the initial isotope signal during and after deposition of the snow. This is reflected in snow-pit isotope data from Kohnen Station, Antarctica, which exhibit a seasonal cycle but also strong interannual variations that contradict local temperature observations. These inconsistencies persist even after averaging many profiles and are thus not explained by local stratigraphic noise. Previous studies have suggested that post-depositional processes may significantly influence the isotopic composition of East Antarctic firn. Here, we investigate the importance of post-depositional processes within the open-porous firn (≳ 10 cm depth) at Kohnen Station by separating spatial from temporal variability. To this end, we analyse 22 isotope profiles obtained from two snow trenches and examine the temporal isotope modifications by comparing the new data with published trench data extracted 2 years earlier. The initial isotope profiles undergo changes over time due to downward advection, firn diffusion and densification in magnitudes consistent with independent estimates. Beyond that, we find further modifications of the original isotope record to be unlikely or small in magnitude (≪ 1 ‰ RMSD). These results show that the discrepancy between local temperatures and isotopes most likely originates from spatially coherent processes prior to or during deposition, such as precipitation intermittency or systematic isotope modifications acting on drifting or loose surface snow

    Dynamical Interactions and the Black Hole Merger Rate of the Universe

    Get PDF
    Binary black holes can form efficiently in dense young stellar clusters, such as the progenitors of globular clusters, via a combination of gravitational segregation and cluster evaporation. We use simple analytic arguments supported by detailed N-body simulations to determine how frequently black holes born in a single stellar cluster should form binaries, be ejected from the cluster, and merge through the emission of gravitational radiation. We then convolve this ``transfer function'' relating cluster formation to black hole mergers with (i) the distribution of observed cluster masses and (ii) the star formation history of the universe, assuming that a significant fraction gcl of star formation occurs in clusters and that a significant fraction gcand of clusters undergo this segregation and evaporation process. We predict future ground--based gravitational wave (GW) detectors could observe ~500 (gcl/0.5) (gcand/0.1) double black hole mergers per year, and the presently operating LIGO interferometer would have a chance (50%) at detecting a merger during its first full year of science data. More realistically, advanced LIGO and similar next-generation gravitational wave observatories provide unique opportunities to constrain otherwise inaccessible properties of clusters formed in the early universe.Comment: 4 pages, 2 figures. To appear in PRD Rapid Communication

    Laser‐induced desorption of NO from NiO(100): Ab initio calculations of potential surfaces for intermediate excited states

    Get PDF
    In order to interpret the experimental results of the state resolved UV‐laser‐induced desorption of NO from NiO(100) (rotational and vibrational populations, velocity distributions of the desorbing NO molecules, etc.), we have performed ab initio complete active space self‐consistent field (CASSCF) and configuration interaction (CI) calculations for the interaction potential between NO and the NiO(100) surface in the electronic ground state and for those excited states which are involved in the desorption process. The NiO(100)–NO distance and the tilt angle between the NO axis and the surface normal have been varied. A cluster model containing a NiO8−5‐cluster embedded in a Madelung potential has been used for representing the NiO(100) surface. The excited states which are important for the desorption process, are charge transfer states of the substrate–adsorbate system, in which one electron is transferred from the surface into the NO‐2π‐orbital. The potential curves of these excited charge transfer states show deep minima (4 eV–5 eV) at surface/NO distances which are smaller than that in the ground state. The angular dependence of these potentials behaves similar as in the ground state. A semiempirical correction to the calculated excitation energies has been added which makes use of the bulk polarization of NiO. With this correction the charge transfer states are considerably stabilized. The lowest excitation energy amounts to about 4 eV which is in reasonable agreement with the onset of the laser desorption observed experimentally at about 3.5 eV. The density of the NO−‐like states is rather high, so that probably several excited states are involved in the desorption process. The potential energy curves for all of these states are quite similar, but the transitions from the ground state into different excited charge transfer states show strongly differing oscillator strengths, which are also strongly dependent on the surface/NO distance. This fact is important for the dynamics of the deexcitation process in the sense of a selection criterion for the states involved. The magnitude of the oscillator strengths is large in comparison with the excitation of NO in the gas phase, which might be an indication for the possibility of optical excitation processes. One dimensional wave packet calculations on two potential energy curves using fixed lifetimes for the excited state in each calculation have been performed and enable us to estimate the mean lifetime of the excited state to be 15 fs≤τ≤25 fs. This implies that the dynamics of the system is dominated by the attractive part of the excited state potential

    Detaching from the negative by reappraisal: the role of right superior frontal gyrus (BA9/32)

    Get PDF
    The ability to reappraise the emotional impact of events is related to long-term mental health. Self-focused reappraisal (REAPPself), i.e., reducing the personal relevance of the negative events, has been previously associated with neural activity in regions near right medial prefrontal cortex, but rarely investigated among brain-damaged individuals. Thus, we aimed to examine the REAPPself ability of brain-damaged patients and healthy controls considering structural atrophies and gray matter intensities, respectively. Twenty patients with well-defined cortex lesions due to an acquired circumscribed tumor or cyst and 23 healthy controls performed a REAPPself task, in which they had to either observe negative stimuli or decrease emotional responding by REAPPself. Next, they rated the impact of negative arousal and valence. REAPPself ability scores were calculated by subtracting the negative picture ratings after applying REAPPself from the ratings of the observing condition. The scores of the patients were included in a voxel-based lesion-symptom mapping (VLSM) analysis to identify deficit related areas (ROI). Then, a ROI group-wise comparison was performed. Additionally, a whole-brain voxel-based-morphometry (VBM) analysis was run, in which healthy participant's REAPPself ability scores were correlated with gray matter intensities. Results showed that (1) regions in the right superior frontal gyrus (SFG), comprising the right dorsolateral prefrontal cortex (BA9) and the right dorsal anterior cingulate cortex (BA32), were associated with patient's impaired down-regulation of arousal, (2) a lesion in the depicted ROI occasioned significant REAPPself impairments, (3) REAPPself ability of controls was linked with increased gray matter intensities in the ROI regions. Our findings show for the first time that the neural integrity and the structural volume of right SFG regions (BA9/32) might be indispensable for REAPPself. Implications for neurofeedback research are discussed.Fil: Falquez, Rosalux. University of Heidelberg; AlemaniaFil: Couto, Juan Blas Marcos. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; ArgentinaFil: Ibáñez Barassi, Agustín Mariano. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Neurociencia Cognitiva. Fundación Favaloro. Instituto de Neurociencia Cognitiva; ArgentinaFil: Freitag, Martin T.. German Cancer Research Center; AlemaniaFil: Berger, Moritz. German Cancer Research Center; AlemaniaFil: Arens, Elisabeth A.. University of Heidelberg; AlemaniaFil: Lang, Simone. University of Heidelberg; AlemaniaFil: Barnow, Sven. University of Heidelberg; Alemani
    corecore