2,125 research outputs found
Large Deviations Principle for a Large Class of One-Dimensional Markov Processes
We study the large deviations principle for one dimensional, continuous,
homogeneous, strong Markov processes that do not necessarily behave locally as
a Wiener process. Any strong Markov process in that is
continuous with probability one, under some minimal regularity conditions, is
governed by a generalized elliptic operator , where and are
two strictly increasing functions, is right continuous and is
continuous. In this paper, we study large deviations principle for Markov
processes whose infinitesimal generator is where
. This result generalizes the classical large deviations
results for a large class of one dimensional "classical" stochastic processes.
Moreover, we consider reaction-diffusion equations governed by a generalized
operator . We apply our results to the problem of wave front
propagation for these type of reaction-diffusion equations.Comment: 23 page
Smoluchowski-Kramers approximation in the case of variable friction
We consider the small mass asymptotics (Smoluchowski-Kramers approximation)
for the Langevin equation with a variable friction coefficient. The limit of
the solution in the classical sense does not exist in this case. We study a
modification of the Smoluchowski-Kramers approximation. Some applications of
the Smoluchowski-Kramers approximation to problems with fast oscillating or
discontinuous coefficients are considered.Comment: already publishe
On second order elliptic equations with a small parameter
The Neumann problem with a small parameter
is
considered in this paper. The operators and are self-adjoint second
order operators. We assume that has a non-negative characteristic form
and is strictly elliptic. The reflection is with respect to inward
co-normal unit vector . The behavior of
is effectively described via
the solution of an ordinary differential equation on a tree. We calculate the
differential operators inside the edges of this tree and the gluing condition
at the root. Our approach is based on an analysis of the corresponding
diffusion processes.Comment: 28 pages, 1 figure, revised versio
Localized growth modes, dynamic textures, and upper critical dimension for the Kardar-Parisi-Zhang equation in the weak noise limit
A nonperturbative weak noise scheme is applied to the Kardar-Parisi-Zhang
equation for a growing interface in all dimensions. It is shown that the growth
morphology can be interpreted in terms of a dynamically evolving texture of
localized growth modes with superimposed diffusive modes. Applying Derrick's
theorem it is conjectured that the upper critical dimension is four.Comment: 10 pages in revtex and 2 figures in eps, a few typos correcte
- …
