3 research outputs found

    Villa Urbaine: Wohnen im Universitätsquartier

    Get PDF

    Transcriptomic approach for assessment of the impact on microalga and macrophyte of in-situ exposure in river sites contaminated by chlor-alkali plant effluents

    No full text
    Water quality degradation is a worldwide problem, but risk evaluation of chronic pollution in-situ is still a challenge. The present study aimed to evaluate the potential of transcriptomic analyses in representative aquatic primary producers to assess the impact of environmental pollution in-situ: the microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii were exposed 2 h in the Babeni Reservoir of the Olt River impacted by chlor-alkali plant effluent release resulting in increased concentrations of Hg and NaCl in receiving water. The response at the transcriptomic level was strong, resulting in up to 5485, and 8700 dysregulated genes (DG) for the microalga and for the macrophyte exposed in the most contaminated site, respectively. Transcriptomic response was congruent with the concentrations of Hg and NaCl in the water of the impacted reservoir. Genes involved in development, energy metabolism, lipid metabolism, nutrition, and RedOx homeostasis were dysregulated during in-situ exposure of both organisms. In addition, genes involved in the cell motility of C. reinhardtii and development of the cell wall of E. nuttallii were affected. DG were in line with adverse outcome pathways and transcriptomic studies reported after exposure to high concentrations of Hg and NaCl under controlled conditions in the laboratory. Transcriptomic response provided a sensitive measurement of the exposure as well as hints on the tolerance mechanisms of environmental pollution, and is thus promising as an early-warning tool to assess water quality degradation

    Massive stars and their supernovae

    No full text
    Stars more massive than about 8-10 solar masses evolve differently from their lower-mass counterparts: nuclear energy liberation is possible at higher temperatures and densities, due to gravitational contraction caused by such high masses, until forming an iron core that ends this stellar evolution. The star collapses thereafter, as insufficient pressure support exists when energy release stops due to Fe/Ni possessing the highest nuclear binding per nucleon, and this implosion turns into either a supernova explosion or a compact black hole remnant object. Neutron stars are the likely compact-star remnants after supernova explosions for a certain stellar mass range. In this chapter, we discuss this late-phase evolution of massive stars and their core collapse, including the nuclear reactions and nucleosynthesis products. We also include in this discussion more exotic outcomes, such as magnetic jet supernovae, hypernovae, gamma-ray bursts and neutron star mergers. In all cases we emphasize the viewpoint with respect to the role of radioactivities
    corecore