6,271 research outputs found
Changes of partitioning and increased root lengths of spruce and beech exposed to ambient pollution concentrations in southern England
International audienc
From the stable to the exotic: clustering in light nuclei
A great deal of research work has been undertaken in alpha-clustering study
since the pioneering discovery of 12C+12C molecular resonances half a century
ago. Our knowledge on physics of nuclear molecules has increased considerably
and nuclear clustering remains one of the most fruitful domains of nuclear
physics, facing some of the greatest challenges and opportunities in the years
ahead. The occurrence of "exotic" shapes in light N=Z alpha-like nuclei is
investigated. Various approaches of the superdeformed and hyperdeformed bands
associated with quasimolecular resonant structures are presented. Evolution of
clustering from stability to the drip-lines is examined: clustering aspects
are, in particular, discussed for light exotic nuclei with large neutron excess
such as neutron-rich Oxygen isotopes with their complete spectroscopy.Comment: 15 pages, 5 figures, Presented at the International Symposium on "New
Horizons in Fundamental Physics - From Neutrons Nuclei via Superheavy
Elements and Supercritical Fields to Neutron Stars and Cosmic Rays" held at
Makutsi Safari Farm, South Africa, December 23-29, 2015. arXiv admin note:
substantial text overlap with arXiv:1402.6590, arXiv:1303.0960,
arXiv:1408.0684, arXiv:1011.342
High-frequency monitoring of nitrogen and phosphorus response in three rural catchments to the end of the 2011–2012 drought in England
This paper uses high-frequency bankside measurements from three catchments selected as part of the UK government-funded Demonstration Test Catchments (DTC) project. We compare the hydrological and hydrochemical patterns during the water year 2011–2012 from the Wylye tributary of the River Avon with mixed land use, the Blackwater tributary of the River Wensum with arable land use and the Newby Beck tributary of the River Eden with grassland land use. The beginning of the hydrological year was unusually dry and all three catchments were in states of drought. A sudden change to a wet summer occurred in April 2012 when a heavy rainfall event affected all three catchments. The year-long time series and the individual storm responses captured by in situ nutrient measurements of nitrate and phosphorus (total phosphorus and total reactive phosphorus) concentrations at each site reveal different pollutant sources and pathways operating in each catchment. Large storm-induced nutrient transfers of nitrogen and or phosphorus to each stream were recorded at all three sites during the late April rainfall event. Hysteresis loops suggested transport-limited delivery of nitrate in the Blackwater and of total phosphorus in the Wylye and Newby Beck, which was thought to be exacerbated by the dry antecedent conditions prior to the storm. The high rate of nutrient transport in each system highlights the scale of the challenges faced by environmental managers when designing mitigation measures to reduce the flux of nutrients to rivers from diffuse agricultural sources. It also highlights the scale of the challenge in adapting to future extreme weather events under a changing climate
Technical note: testing an improved index for analysing storm discharge-concentration hysteresis
Analysis of hydrochemical behaviour during storm events can provide new insights into the process controls on nutrient transport in catchments. The examination of storm behaviours using hysteresis analysis has increased in recent years, partly due to the increased availability of high temporal resolution data sets for discharge and water quality parameters. A number of these analyses involve the use of an index to describe the characteristics of a hysteresis loop in order to compare storm behaviours both within and between catchments. This technical note reviews the methods for calculation of the hysteresis index (HI) and explores a new more effective methodology. Each method is systematically tested and the impact of the chosen calculation on the results is examined. Recommendations are made regarding the most effective method of calculating a HI which can be used for comparing data between storms and between different water quality parameters and catchments
A high-resolution global flood hazard model
Floods are a natural hazard that affect communities worldwide, but to date the vast majority of flood hazard research and mapping has been undertaken by wealthy developed nations. As populations and economies have grown across the developing world, so too has demand from governments, businesses, and NGOs for modeled flood hazard data in these data-scarce regions. We identify six key challenges faced when developing a flood hazard model that can be applied globally and present a framework methodology that leverages recent cross-disciplinary advances to tackle each challenge. The model produces return period flood hazard maps at ∼90 m resolution for the whole terrestrial land surface between 56°S and 60°N, and results are validated against high-resolution government flood hazard data sets from the UK and Canada. The global model is shown to capture between two thirds and three quarters of the area determined to be at risk in the benchmark data without generating excessive false positive predictions. When aggregated to ∼1 km, mean absolute error in flooded fraction falls to ∼5%. The full complexity global model contains an automatically parameterized subgrid channel network, and comparison to both a simplified 2-D only variant and an independently developed pan-European model shows the explicit inclusion of channels to be a critical contributor to improved model performance. While careful processing of existing global terrain data sets enables reasonable model performance in urban areas, adoption of forthcoming next-generation global terrain data sets will offer the best prospect for a step-change improvement in model performance.</p
A Dressed Spin Qubit in Silicon
Coherent dressing of a quantum two-level system provides access to a new
quantum system with improved properties - a different and easily tuneable level
splitting, faster control, and longer coherence times. In our work we
investigate the properties of the dressed, donor-bound electron spin in
silicon, and probe its potential for the use as quantum bit in scalable
architectures. The two dressed spin-polariton levels constitute a quantum bit
that can be coherently driven with an oscillating magnetic field, an
oscillating electric field, by frequency modulating the driving field, or by a
simple detuning pulse. We measure coherence times of ms and
ms, one order of magnitude longer than those of the
undressed qubit. Furthermore, the use of the dressed states enables coherent
coupling of the solid-state spins to electric fields and mechanical
oscillations
4He decay of excited states in 14C
A study of the 7Li(9Be,4He 10Be)2H reaction at E{beam}=70 MeV has been
performed using resonant particle spectroscopy techniques and provides the
first measurements of alpha-decaying states in 14C. Excited states are observed
at 14.7, 15.5, 16.4, 18.5, 19.8, 20.6, 21.4, 22.4 and 24.0 MeV. The
experimental technique was able to resolve decays to the various particle bound
states in 10Be, and provides evidence for the preferential decay of the high
energy excited states into states in 10Be at ~6 MeV. The decay processes are
used to indicate the possible cluster structure of the 14C excited states.Comment: accepted for publication in PR
Three-centre cluster structure in 11C and 11B
Studies of the 16O(9Be,alpha 7Be)14C, 7Li(9Be,alpha 7Li)5He and 7Li(9Be,alpha
alpha t)5He reactions at E(beam)=70 and 55 MeV have been performed using
resonant particle spectroscopy techniques. The 11C excited states decaying into
alpha+7Be(gs) are observed between 8.5 and 13.5 MeV. The alpha+7Li(gs),
alpha+7Li*(4.652 MeV) and t+8Be(gs) decays of 11B excited states between 9 and
19 MeV are observed. The decay processes are used to indicate the possible
three-centre 2alpha+3He (2alpha+3H) cluster structure of observed states. This
cluster structure is more prominent in the positive-parity states, where two
rotational bands with large deformations are suggested. Excitations of some of
the observed T=1/2 resonances coincide with the energies of previously measured
T=3/2 isobaric analogs of the 11Be states,indicating that these states may have
mixed isospin.Comment: Contribution for the proceedings of the NUSTAR'05: NUclear STructure,
Astrophysics and Reactions, University of Surrey, Guildford, UK; accepted for
publication in Journal of Physics
New Measurement of the Direct 3α Decay from the 12C Hoyle State
Excited states in certain atomic nuclei possess an unusual structure, where the dominant degrees of freedom are those of α clusters rather than individual nucleons. It has been proposed that the diffuse 3α system of the 12C Hoyle state may behave like a Bose-Einstein condensate, where the α clusters maintain their bosonic identities. By measuring the decay of the Hoyle state into three α particles, we obtained an upper limit for the rare direct 3α decay branch of 0.047%. This value is now at a level comparable with theoretical predictions and could be a sensitive probe of the structure of this state
Structure of 12Be: intruder d-wave strength at N=8
The breaking of the N=8 shell-model magic number in the 12Be ground state has
been determined to include significant occupancy of the intruder d-wave
orbital. This is in marked contrast with all other N=8 isotones, both more and
less exotic than 12Be. The occupancies of the 0 hbar omega neutron p1/2-orbital
and the 1 hbar omega, neutron d5/2 intruder orbital were deduced from a
measurement of neutron removal from a high-energy 12Be beam leading to bound
and unbound states in 11Be.Comment: 5 pages, 2 figure
- …
