513 research outputs found

    Synthetic biology industry - Data-driven design is creating new opportunities in biotechnology.

    Get PDF
    Synthetic biology is a rapidly emerging interdisciplinary research field that is primarily built upon foundational advances in molecular biology combined with engineering design. The field considers living systems as programmable at the genetic level and has been defined by the development of new platform technologies. This has spurned a rapid growth in start-up companies and the new synthetic biology industry is growing rapidly, with start-up companies receiving ~6.1Binvestmentsince2015andaglobalsyntheticbiologymarketvalueestimatedtobe6.1B investment since 2015 and a global synthetic biology market value estimated to be 14B by 2026. Many of the new start-ups can be grouped within a multi-layer β€˜technology stack’. The β€˜stack’ comprises a number of technology layers which together can be applied to a diversity of new biotechnology applications like consumer biotechnology products and living therapies. The β€˜stack’ also enables new commercial opportunities and value chains similar to the software design and manufacturing revolution of the 20th century. However, synthetic biology industry is at a crucial point, as it now requires recognisable commercial successes in order for the industry to expand and scale, in terms of investment and companies. However, such expansion may directly challenge the ethos of synthetic biology, in terms of open technology sharing and democratisation, which could by accident lead to multi-national corporations and technology monopolies similar to the existing biotechnology/biopharma industry

    Developments in the tools and methodologies of synthetic biology.

    Get PDF
    Synthetic biology is principally concerned with the rational design and engineering of biologically based parts, devices, or systems. However, biological systems are generally complex and unpredictable, and are therefore, intrinsically difficult to engineer. In order to address these fundamental challenges, synthetic biology is aiming to unify a body of knowledge from several foundational scientific fields, within the context of a set of engineering principles. This shift in perspective is enabling synthetic biologists to address complexity, such that robust biological systems can be designed, assembled, and tested as part of a biological design cycle. The design cycle takes a forward-design approach in which a biological system is specified, modeled, analyzed, assembled, and its functionality tested. At each stage of the design cycle, an expanding repertoire of tools is being developed. In this review, we highlight several of these tools in terms of their applications and benefits to the synthetic biology community

    The Foundry: the DNA synthesis and construction Foundry at Imperial College.

    No full text
    The establishment of a DNA synthesis and construction foundry at Imperial College in London heralds a new chapter in the development of synthetic biology to meet new global challenges. The Foundry employs the latest technology to make the process of engineering biology easier, faster and scalable. The integration of advanced software, automation and analytics allows the rapid design, build and testing of engineered organisms

    Opportunities for engineering Outer Membrane Vesicles (OMVs) using synthetic biology approaches

    Get PDF
    Gram-negative bacteria naturally shed lipid vesicles, which contain complex molecular cargoes, from their outer membrane. These outer membrane vesicles (OMVs) have important biological functions relating to microbial stress responses, microbiome regulation, and host-pathogen interactions. OMVs are also attractive vehicles for delivering drugs, vaccines, and other therapeutic agents because of their ability to interact with host cells and their natural immunogenic properties. OMVs are also set to have a positive impact on other biotechnological and medical applications including diagnostics, bioremediation, and metabolic engineering. We envision that the field of synthetic biology offers a compelling opportunity to further expand and accelerate the foundational research and downstream applications of OMVs in a range of applications including the provision of OMV-based healthcare technologies. In our opinion, we discuss how current and potential future synergies between OMV research and synthetic biology approaches might help to further accelerate OMV research and real-world applications for the benefit of animal and human health

    Opportunities to accelerate extracellular vesicle research with cell-free synthetic biology

    Get PDF
    Extracellular vesicles (EVs) are lipid-membrane nanoparticles that are shed or secreted by many different cell types. The extracellular vesicle (EV) research community has rapidly expanded in recent years and are leading efforts to deepen our understanding of EV biological functions in human physiology and pathology. These insights are also providing a foundation on which future EV-based diagnostics and therapeutics are poised to positively impact human health. However, current limitations in our understanding of EV heterogeneity, cargo loading mechanisms and the nascent development of EV metrology are all areas that have been identified as important scientific challenges. The field of synthetic biology is also contending with the challenge of understanding biological complexity as it seeks to combine multidisciplinary scientific knowledge with engineering principles, to build useful and robust biotechnologies in a responsible manner. Within this context, cell-free systems have emerged as a powerful suite of in vitro biotechnologies that can be employed to interrogate fundamental biological mechanisms, including the study of aspects of EV biogenesis, or to act as a platform technology for medical biosensors and therapeutic biomanufacturing. Cell-free gene expression (CFE) systems also enable in vitro protein production, including membrane proteins, and could conceivably be exploited to rationally engineer, or manufacture, EVs loaded with bespoke molecular cargoes for use in foundational or translational EV research. Our pilot data herein, also demonstrates the feasibility of cell-free EV engineering. In this perspective we discuss the opportunities and challenges for accelerating EV research and healthcare applications with cell-free synthetic biology

    A Forward-Design Approach to Increase the Production of Poly-3-Hydroxybutyrate in Genetically Engineered Escherichia coli

    Get PDF
    Biopolymers, such as poly-3-hydroxybutyrate (P(3HB)) are produced as a carbon store in an array of organisms and exhibit characteristics which are similar to oil-derived plastics, yet have the added advantages of biodegradability and biocompatibility. Despite these advantages, P(3HB) production is currently more expensive than the production of oil-derived plastics, and therefore, more efficient P(3HB) production processes would be desirable. In this study, we describe the model-guided design and experimental validation of several engineered P(3HB) producing operons. In particular, we describe the characterization of a hybrid phaCAB operon that consists of a dual promoter (native and J23104) and RBS (native and B0034) design. P(3HB) production at 24 h was around six-fold higher in hybrid phaCAB engineered Escherichia coli in comparison to E. coli engineered with the native phaCAB operon from Ralstonia eutropha H16. Additionally, we describe the utilization of non-recyclable waste as a low-cost carbon source for the production of P(3HB)

    The second messenger c-di-AMP inhibits the osmolyte uptake system OpuC in Staphylococcus aureus

    Get PDF
    Staphylococcus aureus is an important opportunistic human pathogen that is highly resistant to osmotic stresses. In order to survive an increase in osmolarity, bacteria immediately take up potassium and small organic compounds, also referred to as compatible solutes. The second messenger c-di-AMP binds to several receptor proteins, most of which are involved in ion and potassium uptake, that help bacteria cope with osmotic stress. In this study, we identified OpuCA, the ATPase component of an uptake system for the compatible solute carnitine, as a cdi-AMP target protein in S. aureus and found that a strain overproducing c-di-AMP showed reduced carnitine uptake. The CBS domains of OpuCA bound to c-di-AMP, and a crystal structure revealed a putative binding pocket for c-di-AMP in the cleft between the two CBS domains. Thus, c-di-AMP is involved in regulating both branches of osmoprotection (potassium uptake and compatible solute uptake), suggesting that c-di-AMP is a general osmotic stress regulato

    A low-cost biological agglutination assay for medical diagnostic applications

    Get PDF
    Affordable, easy-to-use diagnostic tests that can be readily deployed for point-of-care (POC) testing are key in addressing challenges in the diagnosis of medical conditions and for improving global health in general. Ideally, POC diagnostic tests should be highly selective for the biomarker, user-friendly, have a flexible design architecture and a low cost of production. Here we developed a novel agglutination assay based on whole E. coli cells surface-displaying nanobodies which bind selectively to a target protein analyte. As a proof-of-concept, we show the feasibility of this design as a new diagnostic platform by the detection of a model analyte at nanomolar concentrations. Moreover, we show that the design architecture is flexible by building assays optimized to detect a range of model analyte concentrations supported using straight-forward design rules and a mathematical model. Finally, we re-engineer E. coli cells for the detection of a medically relevant biomarker by the display of two different antibodies against the human fibrinogen and demonstrate a detection limit as low as 10 pM in diluted human plasma. Overall, we demonstrate that our agglutination technology fulfills the requirement of POC testing by combining low-cost nanobody production, customizable detection range and low detection limits. This technology has the potential to produce affordable diagnostics for both field-testing in the developing world, emergency or disaster relief sites as well as routine medical testing and personalized medicine

    The N-terminal region of the ubiquitin regulatory x (UBX) domain-containing Protein 1 (UBXD1) modulates interdomain communication within the valosin-containing Protein p97

    Get PDF
    Valosin-containing protein/p97 is an ATP-driven protein segregase that cooperates with distinct protein cofactors to control various aspects of cellular homeostasis. Mutations at the interface between the regulatory N-domain and the first of two ATPase domains (D1 and D2) deregulate the ATPase activity and cause a multisystem degenerative disorder, inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia/amyotrophic lateral sclerosis. Intriguingly, the mutations affect only a subset of p97-mediated pathways correlating with unbalanced cofactor interactions and most prominently compromised binding of the ubiquitin regulatory X domain-containing protein 1 (UBXD1) cofactor during endolysosomal sorting of caveolin-1. However, how the mutations impinge on the p97-cofactor interplay is unclear so far. In cell-based endosomal localization studies, we identified a critical role of the N-terminal region of UBXD1 (UBXD1-N). Biophysical studies using NMR and CD spectroscopy revealed that UBXD1-N can be classified as intrinsically disordered. NMR titration experiments confirmed a valosin-containing protein/p97 interaction motif and identified a second binding site at helices 1 and 2 of UBXD1-N as binding interfaces for p97. In reverse titration experiments, we identified two distant epitopes on the p97 N-domain that include disease-associated residues and an additional interaction between UBXD1-N and the D1D2 barrel of p97 that was confirmed by fluorescence anisotropy. Functionally, binding of UBXD1-N to p97 led to a reduction of ATPase activity and partial protection from proteolysis. These findings indicate that UBXD1-N intercalates into the p97-ND1 interface, thereby modulating interdomain communication of p97 domains and its activity with relevance for disease pathogenesis. We propose that the polyvalent binding mode characterized for UBXD1-N is a more general principle that defines a subset of p97 cofactors
    • …
    corecore