34,533 research outputs found

    Computational Study of the Structure and Thermodynamic Properties of Ammonium Chloride Clusters Using a Parallel J-Walking Approach

    Get PDF
    The thermodynamic and structural properties of (NH4_4Cl)n_n clusters, n=3-10 are studied. Using the method of simulated annealing, the geometries of several isomers for each cluster size are examined. Jump-walking Monte Carlo simulations are then used to compute the constant-volume heat capacity for each cluster size over a wide temperature range. To carry out these simulations a new parallel algorithm is developed using the Parallel Virtual Machine (PVM) software package. Features of the cluster potential energy surfaces, such as energy differences among isomers and rotational barriers of the ammonium ions, are found to play important roles in determining the shape of the heat capacity curves.Comment: Journal of Chemical Physics, accepted for publicatio

    The Schrodinger-like Equation for a Nonrelativistic Electron in a Photon Field of Arbitrary Intensity

    Full text link
    The ordinary Schrodinger equation with minimal coupling for a nonrelativistic electron interacting with a single-mode photon field is not satisfied by the nonrelativistic limit of the exact solutions to the corresponding Dirac equation. A Schrodinger-like equation valid for arbitrary photon intensity is derived from the Dirac equation without the weak-field assumption. The "eigenvalue" in the new equation is an operator in a Cartan subalgebra. An approximation consistent with the nonrelativistic energy level derived from its relativistic value replaces the "eigenvalue" operator by an ordinary number, recovering the ordinary Schrodinger eigenvalue equation used in the formal scattering formalism. The Schrodinger-like equation for the multimode case is also presented.Comment: Tex file, 13 pages, no figur

    Robust CNOT gates from almost any interaction

    Get PDF
    There are many cases where the interaction between two qubits is not precisely known, but single qubit operations are available. In this paper we show how, regardless of an incomplete knowledge of the strength or form of the interaction between two qubits, it is often possible to construct a CNOT gate which has arbitrarily high fidelity. In particular, we show that oscillations in the strength of the exchange interaction in solid state Si and Ge structures are correctable.Comment: 5 pages, 2 figure

    An Analytic and Probabilistic Approach to the Problem of Matroid Representibility

    Full text link
    We introduce various quantities that can be defined for an arbitrary matroid, and show that certain conditions on these quantities imply that a matroid is not representable over Fq\mathbb{F}_q. Mostly, for a matroid of rank rr, we examine the proportion of size-(r−k)(r-k) subsets that are dependent, and give bounds, in terms of the cardinality of the matroid and qq a prime power, for this proportion, below which the matroid is not representable over Fq\mathbb{F}_q. We also explore connections between the defined quantities and demonstrate that they can be used to prove that random matrices have high proportions of subsets of columns independent

    What do gas-rich galaxies actually tell us about modified Newtonian dynamics?

    Full text link
    It has recently been claimed that measurements of the baryonic Tully-Fisher relation (BTFR), a power-law relationship between the observed baryonic masses and outer rotation velocities of galaxies, support the predictions of modified Newtonian dynamics for the slope and scatter in the relation, while challenging the cold dark matter (CDM) paradigm. We investigate these claims, and find that: 1) the scatter in the data used to determine the BTFR is in conflict with observational uncertainties on the data; 2) these data do not make strong distinctions regarding the best-fit BTFR parameters; 3) the literature contains a wide variety of measurements of the BTFR, many of which are discrepant with the recent results; and 4) the claimed CDM "prediction" for the BTFR is a gross oversimplification of the complex galaxy-scale physics involved. We conclude that the BTFR is currently untrustworthy as a test of CDM.Comment: 5 pages, 2 figures; minor revisions to match published versio

    Quiet Clean Short-haul Experimental Engine (QCSEE) Under-The-Wing (UTW) composite nacelle subsystem test report

    Get PDF
    The element and subcomponent testing conducted to verify the under the wing composite nacelle design is reported. This composite nacelle consists of an inlet, outer cowl doors, inner cowl doors, and a variable fan nozzle. The element tests provided the mechanical properties used in the nacelle design. The subcomponent tests verified that the critical panel and joint areas of the nacelle had adequate structural integrity

    Development of the Magnetic Excitations of Charge-Stripe Ordered La(2-x)Sr(x)NiO(4) on Doping Towards Checkerboard Charge Order

    Get PDF
    The magnetic excitation spectrums of charge stripe ordered La(2-x)Sr(x)NiO(4) x = 0.45 and x = 0.4 were studied by inelastic neutron scattering. We found the magnetic excitation spectrum of x = 0.45 from the ordered Ni^2+ S = 1 spins to match that of checkerboard charge ordered La(1.5)Sr(0.5)NiO(4). The distinctive asymmetry in the magnetic excitations above 40 meV was observed for both doping levels, but an additional ferromagnetic mode was observed in x = 0.45 and not in the x = 0.4. We discuss the origin of crossover in the excitation spectrum between x = 0.45 and x = 0.4 with respect to discommensurations in the charge stripe structure.Comment: 4 Figures. To be appear in the J. Kor. Phys. Soc. as a proceedings paper from the ICM 2012 conferenc

    Magnetically Mediated Transparent Conductors: In2_2O3_3 doped with Mo

    Get PDF
    First-principles band structure investigations of the electronic, optical and magnetic properties of Mo-doped In2_2O3_3 reveal the vital role of magnetic interactions in determining both the electrical conductivity and the Burstein-Moss shift which governs optical absorption. We demonstrate the advantages of the transition metal doping which results in smaller effective mass, larger fundamental band gap and better overall optical transmission in the visible -- as compared to commercial Sn-doped In2_2O3_3. Similar behavior is expected upon doping with other transition metals opening up an avenue for the family of efficient transparent conductors mediated by magnetic interactions
    • …
    corecore