58 research outputs found

    Thermophysical and elastic properties of Cu50Zr50 and (Cu50Zr50)95Al5 bulk-metallic-glass-forming alloys

    Get PDF
    By employing a containerless high-temperature high-vacuum electrostatic levitation technique, the thermophysical properties, including the ratio between the specific heat capacity and the hemispherical total emissivity, the specific volume, and the viscosity, of Cu50Zr50 and (Cu50Zr50)95Al5 bulk-metallic-glass (BMG)-forming liquids have been measured. Compared with Cu50Zr50, the improved glass-forming ability of (Cu50Zr50)95Al5 can be attributed to its dense liquid structure and its high value of viscosity. Additionally, the relationship between the viscosity of various BMG forming liquids at the melting temperature and the elastic properties of the corresponding glasses at room temperature will be compared

    Elastic Properties and Internal Friction of Two Magnesium Alloys at Elevated Temperatures

    Get PDF
    The elastic properties and internal friction of two magnesium alloys were studied from 25 C to 450 C using Resonant Ultrasound Spectroscopy (RUS). The Young's moduli decrease with increasing temperature. At 200 C, a change in the temperature dependence of the elastic constants is observed. The internal friction increases significantly with increasing temperature above 200 C. The observed changes in the temperature dependence of the elastic constants and the internal friction are the result of anelastic relaxation by grain boundary sliding at elevated temperatures. Elastic properties govern the behavior of a materials subjected to stress over a region of strain where the material behaves elastically. The elastic properties, including the Young's modulus (E), shear modulus (G), bulk modulus (B), and Poisson's ratio (?), are of significant interest to many design and engineering applications. The choice of the most appropriate material for a particular application at elevated temperatures therefore requires knowledge of its elastic properties as a function of temperature. In addition, mechanical vibration can cause significant damage in the automotive, aerospace, and architectural industries and thus, the ability of a material to dissipate elastic strain energy in materials, known as damping or internal friction, is also important property. Internal friction can be the result of a wide range of physical mechanisms, and depends on the material, temperature, and frequency of the loading. When utilized effectively in engineering applications, the damping capacity of a material can remove undesirable noise and vibration as heat to the surroundings. The elastic properties of materials can be determined by static or dynamic methods. Resonant Ultrasound Spectroscopy (RUS), used in this study, is a unique and sophisticated non-destructive dynamic technique for determining the complete elastic tensor of a solid by measuring the resonant spectrum of mechanical resonance for a sample of known geometry, dimensions, and mass. In addition, RUS allows determination of internal friction, or damping, at different frequencies and temperatures. Polycrystalline pure magnesium (Mg) exhibits excellent high damping properties. However, the poor mechanical properties limit the applications of pure Mg. Although alloying can improve the mechanical properties of Mg, the damping properties are reduced with additions of alloying elements. Therefore, it becomes necessary to study and develop Mg-alloys with simultaneous high damping capacity and improved mechanical properties. Moreover, studies involving the high temperature dynamic elastic properties of Mg alloys are limited. In this study, the elastic properties and internal friction of two magnesium alloys were studied at elevated temperatures using RUS. The effect of alloy composition and grain size was investigated. The wrought magnesium alloys AZ31 and ZK60 were employed. Table 1 gives the nominal chemical compositions of these two alloys. The ZK60 alloy is a commercial extruded plate with a T5 temper, i.e. solution-treated at 535 C for two hours, quenched in hot water, and aged at 185 C for 24 hours. The AZ31 alloy is a commercial rolled plate with a H24 temper, i.e. strain hardened and partially annealed

    Right hemithoracic pseudocyst with splenic artery aneurysm: two rare complications of an uncommon disease

    Get PDF
    Pleural involvement is an uncommon but well recognized complication of chronic pancreatitis, mainly in the form of pleural effusion affecting the left hemithorax. Pancreatic pseudocyst extending to the posterior mediastinum with or without communication with the pleural space is another rare form of this involvement.The treatment of chronic pancreatic pleural effusions and pancreatic pseudocysts generally starts with a conservative approach including bowel rest, drainage of the pleural effusion by repeated thoracentesis or a chest tube, and total parenteral nutrition (TPN) for a period of time determined by the clinical course. Other treatment modalities including percutaneous drainage, endoscopic retrograde cholangiopancreatogram (ERCP) with stenting of the pancreatic duct and surgical drainage are used if conservative approaches fail.We report a patient with a complicated pancreatic pseudocyst who showed an involvement of the posterior mediastinum and right pleural space, with conspectus sparing of the left hemithorax. The patient had a prolonged and complicated course that included recurrence of the pseudocyst with oral feedings and the development of a splenic artery aneurysm. Some of the above findings have been reported separately as uncommon complications of chronic pancreatitis and pancreatic pseudcyst, but to our knowledge a single case with all these complications was not published in the English literature

    Final Report of the AFIT Quality Initiative External Discovery Committee

    Get PDF
    This report summarizes the findings of the Air Force Institute of Technology’s (AFIT’s) Quality Initiative - External Discovery Team. The overarching purpose of the Quality Initiative is to create a detailed, executable investment strategy for modernizing AFIT’s instructional capabilities across five thrust areas. These activities were completed over the course of one year, beginning in June of 2016 and concluding in June of 2017. The data gathered were evaluated and several recommendations for further review were decided upon by the External Discovery Team. The following report briefly covers those recommendations and provides sources from which the recommendations were gleaned. These recommendations are meant to serve as a baseline for ways in which AFIT could begin to program resources to help improve teaching and instruction across the institution as a whole. The data presented here are meant to serve as a compliment to the Internal Discovery Team’s report that focuses on data and feedback gathered from institutions internal to AFIT

    Systemic and tumor level iron regulation in men with colorectal cancer: a case control study

    Get PDF
    BACKGROUND: Increased cellular iron exposure is associated with colorectal cancer (CRC) risk. Hepcidin, a liver peptide hormone, acts as the primary regulator of systemic iron status by blocking iron release from enterocytes into plasma. Concentrations are decreased during low iron status and increased during inflammation. The role of hepcidin and the factors influencing its regulation in CRC remains largely unknown. This study explored systemic and tumor level iron regulation in men with CRC. METHODS: The participants were 20 CRC cases and 20 healthy control subjects. Colonic tissue (adenocarcinoma [cases] healthy mucosa [controls]) was subjected to quantitative PCR (hepcidin, iron transporters and IL-6) and Perls’ iron staining. Serum was analyzed using ELISA for hepcidin, iron status (sTfR) and inflammatory markers (CRP, IL-6, TNF-α). Anthropometrics, dietary iron intake and medical history were obtained. RESULTS: Cases and controls were similar in demographics, medication use and dietary iron intake. Systemically, cases compared to controls had lower iron status (sTfR: 21.6 vs 11.8 nmol/L, p < 0.05) and higher marker of inflammation (CRP: 8.3 vs 3.4 μg/mL, p < 0.05). Serum hepcidin was mildly decreased in cases compared to controls; however, it was within the normal range for both groups. Within colonic tissue, 30% of cases (6/20) presented iron accumulation compared to 5% of controls (1/20) (χ(2) = 5.0; p < 0.05) and higher marker of inflammation (IL-6: 9.4-fold higher compared to controls, p < 0.05). Presence of adenocarcinoma iron accumulation was associated with higher serum hepcidin (iron accumulation group 80.8 vs iron absence group 22.0 ng/mL, p < 0.05). CONCLUSIONS: While CRC subjects had serum hepcidin concentrations in the normal range, it was higher given their degree of iron restriction. Inappropriately elevated serum hepcidin may reduce duodenal iron absorption and further increase colonic adenocarcinoma iron exposure. Future clinical studies need to assess the appropriateness of dietary iron intake or iron supplementation in patients with CRC

    8:28 | A Short Film

    No full text
    corecore