759 research outputs found

    Functional Aspects of Primate Grooming

    Get PDF
    Author Institution: Division of Biological Sciences, University of Michigan, Ann Arbor, and New York Zoological SocietyExperimental walks with a tame primate reveal that free living primates are likely to be subject to frequent infestation by ticks. Observations on the grooming behavior of mangabeys, red colobus and blue monkeys demonstrated that self grooming is primarily directed to parts of the body not subjected to allo-grooming, and that its role is a cursory brushing away of loose particles rather than a detailed cleansing. Allo-grooming is directed towards the detailed cleansing of the skin and fur, and is associated with frequent particle removal. Length of body fur has a considerable influence on the amount of grooming different parts of the body receive. I suggest that sexual dimorphism, age, sex and dominance status are important in determining rates of ectoparasite acquisition, and so the amount of grooming individuals need and receive

    Induced Ge Spin Polarization at the Fe/Ge Interface

    Full text link
    We report direct experimental evidence showing induced magnetic moments on Ge at the interface in an Fe/Ge system. Details of the x-ray magnetic circular dichroism and resonant magnetic scattering at the Ge L edge demonstrate the presence of spin-polarized {\it s} states at the Fermi level, as well as {\it d} character moments at higher energy, which are both oriented antiparallel to the moment of the Fe layer. Use of the sum rules enables extraction of the L/S ratio, which is zero for the {\it s} part and ∼0.5\sim0.5 for the {\it d} component. These results are consistent with layer-resolved electronic structure calculations, which estimate the {\it s} and {\it d} components of the Ge moment are anti-parallel to the Fe {\it 3d} moment and have a magnitude of ∼0.01μB\sim0.01 \mu_B.Comment: 4 pages, 5 figures, submitted to Phys. Rev. Let

    Five meter diameter conical furlable antenna

    Get PDF
    An investigation was made to demonstrate that a 5-meter-diameter, furlable, conical reflector antenna utilizing a line source feed can be fabricated utilizing composite materials and to prove that the antenna can function mechanically and electrically as prototype flight hardware. The design, analysis, and testing of the antenna are described. An RF efficiency of 55% at 8.5 GHz and a surface error of 0.64 mm rms were chosen as basic design requirements. Actual test measurements yielded an efficiency of 53% (49.77 dB gain) and a surface error of 0.61 mm rms. Atmospherically induced corrosion of the reflector mesh resulted in the RF performance degradation. An assessment of the antenna as compared to the current state of the art technology was made. This assessment included cost, surface accuracy and RF performance, structural and mechanical characteristics, and possible applications

    Local Environment of Ferromagnetically Ordered Mn in Epitaxial InMnAs

    Full text link
    The magnetic properties of the ferromagnetic semiconductor In0.98Mn0.02As were characterized by x-ray absorption spectroscopy and x-ray magnetic circular dichroism. The Mn exhibits an atomic-like L2,3 absorption spectrum that indicates that the 3d states are highly localized. In addition, a large dichroism at the Mn L2,3 edge was observed from 5-300 K at an applied field of 2T. A calculated spectrum assuming atomic Mn2+ yields the best agreement with the experimental InMnAs spectrum. A comparison of the dichroism spectra of MnAs and InMnAs show clear differences suggesting that the ferromagnetism observed in InMnAs is not due to hexagonal MnAs clusters. The temperature dependence of the dichroism indicates the presence of two ferromagnetic species, one with a transition temperature of 30 K and another with a transition temperature in excess of 300 K. The dichroism spectra are consistent with the assignment of the low temperature species to random substitutional Mn and the high temperature species to Mn near-neighbor pairs.Comment: 10 pages, 4 figures, accepted by Applied Physics Letter

    Strain-mediated metal-insulator transition in epitaxial ultra-thin films of NdNiO3

    Full text link
    We have synthesized epitaxial NdNiO3_{3} ultra-thin films in a layer-by-layer growth mode under tensile and compressive strain on SrTiO3_{3} (001) and LaAlO3_3 (001), respectively. A combination of X-ray diffraction, temperature dependent resistivity, and soft X-ray absorption spectroscopy has been applied to elucidate electronic and structural properties of the samples. In contrast to the bulk NdNiO3_{3}, the metal-insulator transition under compressive strain is found to be completely quenched, while the transition remains under the tensile strain albeit modified from the bulk behavior.Comment: 4 pages, 4 figure

    Orbital control in strained ultra-thin LaNiO3_3/LaAlO3_3 superlattices

    Full text link
    In pursuit of rational control of orbital polarization, we present a combined experimental and theoretical study of single unit cell superlattices of the correlated metal LaNiO3_3 and the band insulator LaAlO3_3. Polarized x-ray absorption spectra show a distinct asymmetry in the orbital response under strain. A splitting of orbital energies consistent with octahedral distortions is found for the case of compressive strain. In sharp contrast, for tensile strain, no splitting is found although a strong orbital polarization is present. Density functional theory calculations including a Hubbard U term reveal that this asymmetry is a result of the interplay of strain and confinement induces octahedral rotations and distortions and altered covalency in the bonding across the interfacial Ni-O-Al apical oxygen, leading to a charge disporportionation at the Ni sites for tensile strain.Comment: 4 pages. 5 figure

    Effect of polar discontinuity on the growth of LaNiO3/LaAlO3 superlattices

    Full text link
    We have conducted a detailed microscopic investigation of [LaNiO3(1 u.c.)/LaAlO3(1 u.c.)]N superlattices grown on (001) SrTiO3 and LaAlO3 to explore the influence of polar mismatch on the resulting electronic and structural properties. Our data demonstrate that the initial growth on the non-polar SrTiO3 surface leads to a rough morphology and unusual 2+ valence of Ni in the first LaNiO3 layer, which is not observed after growth on the polar surface of LaAlO3. A newly devised model suggests that the polar mismatch can be resolved if the perovskite layers grow with an excess of LaO, which also accounts for the observed electronic, chemical, and structural effects.Comment: 3 pages, 3 figure

    Emergent properties hidden in plane view: Strong electronic correlations at oxide interfaces

    Full text link
    Finding new collective electronic states in materials is one of the fundamental goals of condensed matter physics. Atomic-scale superlattices formed from transition metal oxides are a particularly appealing hunting ground for new physics. In bulk form, transition metal oxides exhibit a remarkable range of magnetic, superconducting, and multiferroic phases that are of great scientific interest and are potentially capable of providing innovative energy, security, electronics and medical technology platforms. In superlattices new states may emerge at the interfaces where dissimilar materials meet. Here we illustrate the essential features that make transition metal oxide-based heterostructures an appealing discovery platform for emergent properties with a few selected examples, showing how charge redistributes, magnetism and orbital polarization arises and ferroelectric order emerges from heterostructures comprised of oxide components with nominally contradictory behavior with the aim providing insight into the creation and control of novel behavior at oxide interfaces by suitable mechanical, electrical or optical boundary conditions and excitations.Comment: 16 pages, 5 figure
    • …
    corecore