54 research outputs found

    Characterizing simulated galaxy stellar mass histories

    Get PDF
    Cosmological galaxy formation simulations can now produce rich and diverse ensembles of galaxy histories. These simulated galaxy histories, taken all together, provide an answer to the question ‘How do galaxies form?’ for the models used to construct them. We characterize such galaxy history ensembles both to understand their properties and to identify points of comparison for histories within a given galaxy formation model or between different galaxy formation models and simulations. We focus primarily on stellar mass histories of galaxies with the same final stellar mass, for six final stellar mass values and for three different simulated galaxy formation models (a semi-analytic model built upon the dark matter Millennium simulation and two models from the hydrodynamical OverWhelmingly Large Simulations project). Using principal component analysis (PCA) to classify scatter around the average stellar mass history, we find that one fluctuation dominates for all sets of histories we consider, although its shape and contribution can vary between samples. We correlate the PCA characterization with several z = 0 galaxy properties (to connect with survey observables) and also compare it to some other galaxy history properties. We then explore separating galaxy stellar mass histories into classes, using the largest PCA contribution, k-means clustering, and simple Gaussian mixture models. For three component models, these different methods often gave similar results. These history classification methods provide a succinct and often quick way to characterize changes in the full ensemble of histories of a simulated population as physical assumptions are varied, to compare histories of different simulated populations to each other, and to assess the relation of simulated histories to fixed time observations

    Neutron star mergers and rare core-collapse supernovae as sources of r-process enrichment in simulated galaxies

    Get PDF
    We use cosmological, magnetohydrodynamical simulations of Milky Way-mass galaxies from the Auriga project to study their enrichment with rapid neutron capture (r-process) elements. We implement a variety of enrichment models from both binary neutron star mergers and rare core-collapse supernovae. We focus on the abundances of (extremely) metal-poor stars, most of which were formed during the first ~Gyr of the Universe in external galaxies and later accreted onto the main galaxy. We find that the majority of metal-poor stars are r-process enriched in all our enrichment models. Neutron star merger models result in a median r-process abundance ratio which increases with metallicity, whereas the median trend in rare core-collapse supernova models is approximately flat. The scatter in r-process abundance increases for models with longer delay times or lower rates of r-process producing events. Our results are nearly perfectly converged, in part due to the mixing of gas between mesh cells in the simulations. Additionally, different Milky Way-mass galaxies show only small variation in their respective r-process abundance ratios. Current (sparse and potentially biased) observations of metal-poor stars in the Milky Way seem to prefer rare core-collapse supernovae over neutron star mergers as the dominant source of r-process elements at low metallicity, but we discuss possible caveats to our models. Dwarf galaxies which experience a single r-process event early in their history show highly enhanced r-process abundances at low metallicity, which is seen both in observations and in our simulations. We also find that the elements produced in a single event are mixed with ~10^8 Msun of gas relatively quickly, distributing the r-process elements over a large region.Comment: Accepted for publication in MNRAS. Revised version: added Figure 13 (on mixing of iron and r-process elements) and an Appendix (on iron and magnesium abundances) and updated the r-process yields (Tables 1 and 2 and normalization of abundances

    Accurate Identification of Closely Related Mycobacterium tuberculosis Complex Species by High Resolution Tandem Mass Spectrometry

    Get PDF
    Rapid and accurate differentiation of Mycobacterium tuberculosis complex (MTBC) species from other mycobacterium is essential for appropriate therapeutic management, timely intervention for infection control and initiation of appropriate health care measures. However, routine clinical characterization methods for Mycobacterium tuberculosis (Mtb) species remain both, time consuming and labor intensive. In the present study, an innovative liquid Chromatography-Mass Spectrometry method for the identification of clinically most relevant Mycobacterium tuberculosis complex species is tested using a model set of mycobacterium strains. The methodology is based on protein profiling of Mycobacterium tuberculosis complex isolates, which are used as markers of differentiation. To test the resolving power, speed, and accuracy of the method, four ATCC type strains and 37 recent clinical isolates of closely related species were analyzed using this new approach. Using different deconvolution algorithms, we detected hundreds of individual protein masses, with a subpopulation of these functioning as species-specific markers. This assay identified 216, 260, 222, and 201 proteoforms for M. tuberculosis ATCC 27294™, M. microti ATCC 19422™, M. africanum ATCC 25420™, and M. bovis ATCC 19210™ respectively. All clinical strains were identified to the correct species with a mean of 95% accuracy. Our study successfully demonstrates applicability of this novel mass spectrometric approach to identify clinically relevant Mycobacterium tuberculosis complex species that are very closely related and difficult to differentiate with currently existing methods. Here, we present the first proof-of-principle study employing a fast mass spectrometry-based method to identify the clinically most prevalent species within the Mycobacterium tuberculosis species complex

    An ever-present GaiaGaia snail shell triggered by a dark matter wake

    Get PDF
    We utilize a novel numerical technique to model star formation in cosmological simulations of galaxy formation - called Superstars - to simulate a Milky Way-like galaxy with 108\gtrsim10^8 star particles to study the formation and evolution of out-of-equilibrium stellar disc structures in a full cosmological setting. In the plane defined by the coordinate and velocity perpendicular to the mid-plane (vertical phase space, {Z,VZ}\{Z,V_Z\}), stars in Solar-like volumes at late times exhibit clear spirals qualitatively similar in shape and amplitude to the GaiaGaia ``Snail shell'' phase spiral. We show that the phase spiral forms at a look back time of 6\sim 6 Gyr during the pericentric passage of a 1010\sim10^{10} M\rm M_{\odot} satellite on a polar orbit. This satellite stimulates the formation of a resonant wake in the dark matter halo while losing mass at a rate of 0.5\sim0.5-11 dex per orbit loop. The peak magnitude of the wake-induced gravitational torque at the Solar radius is 8\sim 8 times that from the satellite, and triggers the formation of a disc warp that wraps up into a vertical phase spiral over time. As the wake decays, the phase spiral propagates several Gigayears to present-day and can be described as ``ever-present'' once stable disc evolution is established. These results suggest an alternative scenario to explain the GaiaGaia phase spiral which does not rely on a perturbation from bar buckling or a recent direct hit from a satellite.Comment: accepted for pub in mnras. 11 + 5 pages. For a high-cadence animated version of figure 1, see https://wwwmpa.mpa-garching.mpg.de/auriga/movies/multi_halo_6_sf64.mp

    Fast Radio Bursts as Probes of Magnetic Fields in Galaxies at z < 0.5

    Get PDF
    We present a sample of nine Fast Radio Bursts (FRBs) from which we derive magnetic field strengths of the host galaxies represented by normal, z<0.5z<0.5 star-forming galaxies with stellar masses M1081010.5MM_* \approx 10^8 -10^{10.5} M_\odot. We find no correlation between the FRB rotation measure(RM) and redshift which indicates that the RM values are due mostly to the FRB host contribution. This assertion is further supported by strong correlations (Spearman test probabilities PS0.05P_S \simeq 0.05) found between RM and the estimated host dispersion measure (DMHostDM_{Host}) and host-normalized galacto-centric offset (Spearman rSr_S values equal to 0.64 and -0.52). For these nine galaxies, we estimate their magnetic field strengths projected along the sightline BB finding a low median value of 0.5μG0.5 \mu G. This implies the magnetic fields of our sample of hosts are weaker than those characteristic of the Solar neighborhood (6μG\approx 6 \mu G), but relatively consistent with a lower limit on observed range of 210μG2-10 \mu G for star-forming, disk galaxies, especially as we consider reversals in the B-field, and that we are only probing BB_{\parallel}. We compare to RMs from simulated galaxies of the Auriga project -- magneto-hydrodynamic cosmological zoom simulations - and find that the simulations predict the observed values to within the 95%95\% CI. Upcoming FRB surveys will provide hundreds of new FRBs with high-precision localizations, rotation measures, and imaging follow-up to support further investigation on the magnetic fields of a diverse population of z<1z<1 galaxies.Comment: 17 pages, 8 figures, 4 tables, Submitted to Ap

    Magnetising the circumgalactic medium of disk galaxies

    Get PDF
    The circumgalactic medium (CGM) is one of the frontiers of galaxy formation and intimately connected to the galaxy via accretion of gas on to the galaxy and gaseous outflows from the galaxy. Here, we analyse the magnetic field in the CGM of the Milky Way-like galaxies simulated as part of the AURIGA project that constitutes a set of high-resolution cosmological magnetohydrodynamical zoom simulations. We show that before z = 1 the CGM becomes magnetized via galactic outflows that transport magnetized gas from the disc into the halo. At this time, the magnetization of the CGM closely follows its metal enrichment. We then show that at low redshift an in situ turbulent dynamo that operates on a time-scale of Gigayears further amplifies the magnetic field in the CGM and saturates before z = 0. The magnetic field strength reaches a typical value of 0.1μG at the virial radius at z = 0 and becomes mostly uniform within the virial radius. Its Faraday rotation signal is in excellent agreement with recent observations. For most of its evolution, the magnetic field in the CGM is an unordered small-scale field. Only strong coherent outflows at low redshift are able to order the magnetic field in parts of the CGM that are directly displaced by these outflows

    The impact of natal kicks on galactic r-process enrichment by neutron star mergers

    Get PDF
    We study galactic enrichment with rapid neutron capture (r-process) elements in cosmological, magnetohydrodynamical simulations of a Milky Way-mass galaxy. We include a variety of enrichment models, based on either neutron star mergers or a rare class of core-collapse supernova as sole r-process sources. For the first time in cosmological simulations, we implement neutron star natal kicks on-the-fly to study their impact. With kicks, neutron star mergers are more likely to occur outside the galaxy disc, but how far the binaries travel before merging also depends on the kick velocity distribution and shape of the delay time distribution for neutron star mergers. In our fiducial model, the median r-process abundance ratio is somewhat lower and the trend with metallicity is slightly steeper when kicks are included. In a model ‘optimized’ to better match observations, with a higher rate of early neutron star mergers, the median r-process abundances are fairly unaffected by kicks. In both models, the scatter in r-process abundances is much larger with natal kicks, especially at low metallicity, giving rise to more r-process enhanced stars. We experimented with a range of kick velocities and find that with lower velocities, the scatter is reduced, but is still larger than without natal kicks. We discuss the possibility that the observed scatter in r-process abundances is predominantly caused by natal kicks removing the r-process sources far from their birth sites, making enrichment more inhomogeneous, rather than the usual interpretation that the scatter is set by the rarity of its production source

    The effect of magnetic fields on properties of the circumgalactic medium

    Get PDF
    We study the effect of magnetic fields on a simulated galaxy and its surrounding gaseous halo, or circumgalactic medium (CGM), within cosmological ‘zoom-in’ simulations of a Milky Way-mass galaxy as part of the Simulating the Universe with Refined Galaxy Environments (SURGE) project. We use three different galaxy formation models, each with and without magnetic fields, and include additional spatial refinement in the CGM to improve its resolution. The central galaxy’s star formation rate and stellar mass are not strongly affected by the presence of magnetic fields, but the galaxy is more disc dominated and its central black hole is more massive when B > 0. The physical properties of the CGM change significantly. With magnetic fields, the circumgalactic gas flows are slower, the atomic hydrogen-dominated extended discs around the galaxy are more massive and the densities in the inner CGM are therefore higher, the temperatures in the outer CGM are higher, and the pressure in the halo is higher and smoother. The total gas fraction and metal mass fraction in the halo are also higher when magnetic fields are included, because less gas escapes the halo. Additionally, we find that the CGM properties depend on azimuthal angle and that magnetic fields reduce the scatter in radial velocity, whilst enhancing the scatter in metallicity at fixed azimuthal angle. The metals are thus less well-mixed throughout the halo, resulting in more metal-poor halo gas. These results together show that magnetic fields in the CGM change the flow of gas in galaxy haloes, making it more difficult for metal-rich outflows to mix with the metal-poor CGM and to escape the halo, and therefore should be included in simulations of galaxy formation

    Toward a Novel Multilocus Phylogenetic Taxonomy for the Dermatophytes.

    Get PDF
    Type and reference strains of members of the onygenalean family Arthrodermataceae have been sequenced for rDNA ITS and partial LSU, the ribosomal 60S protein, and fragments of β-tubulin and translation elongation factor 3. The resulting phylogenetic trees showed a large degree of correspondence, and topologies matched those of earlier published phylogenies demonstrating that the phylogenetic representation of dermatophytes and dermatophyte-like fungi has reached an acceptable level of stability. All trees showed Trichophyton to be polyphyletic. In the present paper, Trichophyton is restricted to mainly the derived clade, resulting in classification of nearly all anthropophilic dermatophytes in Trichophyton and Epidermophyton, along with some zoophilic species that regularly infect humans. Microsporum is restricted to some species around M. canis, while the geophilic species and zoophilic species that are more remote from the human sphere are divided over Arthroderma, Lophophyton and Nannizzia. A new genus Guarromyces is proposed for Keratinomyces ceretanicus. Thirteen new combinations are proposed; in an overview of all described species it is noted that the largest number of novelties was introduced during the decades 1920-1940, when morphological characters were used in addition to clinical features. Species are neo- or epi-typified where necessary, which was the case in Arthroderma curreyi, Epidermophyton floccosum, Lophophyton gallinae, Trichophyton equinum, T. mentagrophytes, T. quinckeanum, T. schoenleinii, T. soudanense, and T. verrucosum. In the newly proposed taxonomy, Trichophyton contains 16 species, Epidermophyton one species, Nannizzia 9 species, Microsporum 3 species, Lophophyton 1 species, Arthroderma 21 species and Ctenomyces 1 species, but more detailed studies remain needed to establish species borderlines. Each species now has a single valid name. Two new genera are introduced: Guarromyces and Paraphyton. The number of genera has increased, but species that are relevant to routine diagnostics now belong to smaller groups, which enhances their identification
    corecore