150 research outputs found
Solution to the 3-loop -derivable Approximation for Scalar Thermodynamics
We solve the 3-loop -derivable approximation to the thermodynamics of
the massless field theory by reducing it to a 1-parameter variational
problem. The thermodynamic potential is expanded in powers of and ,
where is the coupling constant, is a variational mass parameter, and
is the temperature. There are ultraviolet divergences beginning at 6th
order in that cannot be removed by renormalization. However the finite
thermodynamic potential obtained by truncating after terms of 5th order in
and defines a stable approximation to the thermodynamic functions.Comment: 4 pages, 1 figur
Consistent deformations method applied to a topological coupling of antisymmetric gauge fields in D=3
In this work we use the method of consistent deformations of the master
equation by Barnich and Henneaux in order to prove that an abelian topological
coupling between a zero and a two form fields in D=3 has no nonabelian
generalization. We conclude that a topologically massive model involving the
Kalb-Ramond two-form field does not admit a nonabelian generalization. The
introduction of a connection-type one form field keeps the previous result.Comment: 8 pages. To appear in Physics Letters
Genesis of Dark Energy: Dark Energy as Consequence of Release and Two-stage Tracking Cosmological Nuclear Energy
Recent observations on Type-Ia supernovae and low density () measurement of matter including dark matter suggest that the present-day
universe consists mainly of repulsive-gravity type `exotic matter' with
negative-pressure often said `dark energy' (). But the nature
of dark energy is mysterious and its puzzling questions, such as why, how,
where and when about the dark energy, are intriguing. In the present paper the
authors attempt to answer these questions while making an effort to reveal the
genesis of dark energy and suggest that `the cosmological nuclear binding
energy liberated during primordial nucleo-synthesis remains trapped for a long
time and then is released free which manifests itself as dark energy in the
universe'. It is also explained why for dark energy the parameter . Noting that for stiff matter and for radiation; is for dark energy because is due to `deficiency of
stiff-nuclear-matter' and that this binding energy is ultimately released as
`radiation' contributing , making . When
dark energy is released free at , . But as on present day
at when radiation strength has diminished to , . This, thus almost solves the dark-energy mystery of
negative pressure and repulsive-gravity. The proposed theory makes several
estimates /predictions which agree reasonably well with the astrophysical
constraints and observations. Though there are many candidate-theories, the
proposed model of this paper presents an entirely new approach (cosmological
nuclear energy) as a possible candidate for dark energy.Comment: 17 pages, 4 figures, minor correction
Comments on D-brane Interactions in PP-wave Backgrounds
We calculate the interaction potential between widely separated D-branes in
PP-wave backgrounds in string theory as well as in low-energy supergravity.
Timelike and spacelike orientations are qualitatively different but in both
cases the effective brane tensions and RR charges take the same values as in
Minkowski space in accordance with the expectations from the sigma model
perturbation theory.Comment: Latex, 22 pages. Typos corrected and a reference added, final versio
Constraining the dark energy with galaxy clusters X-ray data
The equation of state characterizing the dark energy component is constrained
by combining Chandra observations of the X-ray luminosity of galaxy clusters
with independent measurements of the baryonic matter density and the latest
measurements of the Hubble parameter as given by the HST key project. By
assuming a spatially flat scenario driven by a "quintessence" component with an
equation of state we place the following limits on the
cosmological parameters and : (i) and (1) if the
equation of state of the dark energy is restricted to the interval (\emph{usual} quintessence) and (ii) and
() if violates the null energy condition and assume values (\emph{extended} quintessence or ``phantom'' energy). These results are in
good agreement with independent studies based on supernovae observations,
large-scale structure and the anisotropies of the cosmic background radiation.Comment: 6 pages, 4 figures, LaTe
Stringing Spins and Spinning Strings
We apply recently developed integrable spin chain and dilatation operator
techniques in order to compute the planar one-loop anomalous dimensions for
certain operators containing a large number of scalar fields in N =4 Super
Yang-Mills. The first set of operators, belonging to the SO(6) representations
[J,L-2J,J], interpolate smoothly between the BMN case of two impurities (J=2)
and the extreme case where the number of impurities equals half the total
number of fields (J=L/2). The result for this particular [J,0,J] operator is
smaller than the anomalous dimension derived by Frolov and Tseytlin
[hep-th/0304255] for a semiclassical string configuration which is the dual of
a gauge invariant operator in the same representation. We then identify a
second set of operators which also belong to [J,L-2J,J] representations, but
which do not have a BMN limit. In this case the anomalous dimension of the
[J,0,J] operator does match the Frolov-Tseytlin prediction. We also show that
the fluctuation spectra for this [J,0,J] operator is consistent with the string
prediction.Comment: 27 pages, 4 figures, LaTex; v2 reference added, typos fixe
Two-loop HTL Thermodynamics with Quarks
We calculate the quark contribution to the free energy of a hot quark-gluon
plasma to two-loop order using hard-thermal-loop (HTL) perturbation theory. All
ultraviolet divergences can be absorbed into renormalizations of the vacuum
energy and the HTL quark and gluon mass parameters. The quark and gluon HTL
mass parameters are determined self-consistently by a variational prescription.
Combining the quark contribution with the two-loop HTL perturbation theory free
energy for pure-glue we obtain the total two-loop QCD free energy. Comparisons
are made with lattice estimates of the free energy for N_f=2 and with exact
numerical results obtained in the large-N_f limit.Comment: 33 pages, 6 figure
Problems with Time-Varying Extra Dimensions or "Cardassian Expansion" as Alternatives to Dark Energy
It has recently been proposed that the Universe might be accelerating as a
consequence of extra dimensions with time varying size. We show that although
these scenarios can lead to acceleration, they run into serious difficulty when
taking into account limits on the time variation of the four dimensional
Newton's constant. On the other hand, models of ``Cardassian'' expansion based
on extra dimensions which have been constructed so far violate the weak energy
condition for the bulk stress energy, for parameters that give an accelerating
universe.Comment: 8 pages, minor changes. To appear in Physical Review
Cosmological evolution of interacting dark energy in Lorentz violation
The cosmological evolution of an interacting scalar field model in which the
scalar field interacts with dark matter, radiation, and baryon via Lorentz
violation is investigated. We propose a model of interaction through the
effective coupling . Using dynamical system analysis, we study the
linear dynamics of an interacting model and show that the dynamics of critical
points are completely controlled by two parameters. Some results can be
mentioned as follows. Firstly, the sequence of radiation, the dark matter, and
the scalar field dark energy exist and baryons are sub dominant. Secondly, the
model also allows the possibility of having a universe in the phantom phase
with constant potential. Thirdly, the effective gravitational constant varies
with respect to time through . In particular, we consider a simple
case where has a quadratic form and has a good agreement with the
modified CDM and quintessence models. Finally, we also calculate the
first post--Newtonian parameters for our model.Comment: 14 pages, published versio
How does Inflation Depend Upon the Nature of Fluids Filling Up the Universe in Brane World Scenario
By constructing different parameters which are able to give us the
information about our universe during inflation,(specially at the start and the
end of the inflationary universe) a brief idea of brane world inflation is
given in this work. What will be the size of the universe at the end of
inflation,i.e.,how many times will it grow than today's size is been speculated
and analysed thereafter. Different kinds of fluids are taken to be the matter
inside the brane. It is observed that in the case of highly positive pressure
grower gas like polytropic,the size of the universe at the end of inflation is
comparitively smaller. Whereas for negative pressure creators (like chaplygin
gas) this size is much bigger. Except thse two cases, inflation has been
studied for barotropic fluid and linear redshift parametrization too. For them the size of the universe after
inflation is much more high. We also have seen that this size does not depend
upon the potential energy at the end of the inflation. On the contrary, there
is a high impact of the initial potential energy upon the size of inflation.Comment: 20 page
- …
