308 research outputs found

    The Three Loop Equation of State of QED at High Temperature

    Get PDF
    We present the three loop contribution (order e4e^4) to the pressure of massless quantum electrodynamics at nonzero temperature. The calculation is performed within the imaginary time formalism. Dimensional regularization is used to handle the usual, intermediate stage, ultraviolet and infrared singularities, and also to prevent overcounting of diagrams during resummation.Comment: ANL-HEP-PR-94-02, SPhT/94-054 (revised final version

    Switching model with two habitats and a predator involving group defence

    Full text link
    Switching model with one predator and two prey species is considered. The prey species have the ability of group defence. Therefore, the predator will be attracted towards that habitat where prey are less in number. The stability analysis is carried out for two equilibrium values. The theoretical results are compared with the numerical results for a set of values. The Hopf bifuracation analysis is done to support the stability results

    Differential Equations for Definition and Evaluation of Feynman Integrals

    Full text link
    It is shown that every Feynman integral can be interpreted as Green function of some linear differential operator with constant coefficients. This definition is equivalent to usual one but needs no regularization and application of RR-operation. It is argued that presented formalism is convenient for practical calculations of Feynman integrals.Comment: pages, LaTEX, MSU-PHYS-HEP-Lu2/9

    Renormalization Group Analysis of \rho-Meson Properties at Finite Density

    Get PDF
    We calculate the density dependence of the ρ\rho-meson mass and coupling constant(gρNNg_{\rho NN}) for ρ\rho-nucleon-nucleon vertex at one loop using the lagrangian where the ρ\rho-meson is included as a dynamical gauge boson of a hidden local symmetry. From the condition that thermodynamic potential should not depend on the arbitrary energy scale, renormalization scale, one can construct a renormalization group equation for the thermodynamic potential and argue that the various renormalization group coefficients are functions of the density or temperature. We calculate the β\beta-function for ρ\rho-nucleon-nucleon coupling constant (gρNNg_{\rho NN}) and γ\gamma-function for ρ\rho-meson mass (γmρ\gamma_{m_\rho}). We found that the ρ\rho-meson mass and the coupling constant for gρNNg_{\rho NN} drop as density increases in the low energy limit.Comment: 24 pages, 10 figures, revised versio

    Restricting quark matter models by gravitational wave observation

    Full text link
    We consider the possibilities for obtaining information about the equation of state for quark matter by using future direct observational data on gravitational waves. We study the nonradial oscillations of both fluid and spacetime modes of pure quark stars. If we observe the ff and the lowest wIIw_{\rm II} modes from quark stars, by using the simultaneously obtained radiation radius we can constrain the bag constant BB with reasonable accuracy, independently of the ss quark mass.Comment: To appear in Phys. Rev.

    The U(1)-Higgs Model: Critical Behaviour in the Confinig-Higgs region

    Full text link
    We study numerically the critical properties of the U(1)-Higgs lattice model, with fixed Higgs modulus, in the region of small gauge coupling where the Higgs and Confining phases merge. We find evidence of a first order transition line that ends in a second order point. By means of a rotation in parameter space we introduce thermodynamic magnitudes and critical exponents in close resemblance with simple models that show analogous critical behaviour. The measured data allow us to fit the critical exponents finding values in agreement with the mean field prediction. The location of the critical point and the slope of the first order line are accurately given.Comment: 21 text pages. 12 postscript figures available on reques

    Building the cosmic distance scale: from Hipparcos to Gaia

    Get PDF
    Hipparcos, the first ever experiment of global astrometry, was launched by ESA in 1989 and its results published in 1997 (Perryman et al., Astron. Astrophys. 323, L49, 1997; Perryman & ESA (eds), The Hipparcos and Tycho catalogues, ESA SP-1200, 1997). A new reduction was later performed using an improved satellite attitude reconstruction leading to an improved accuracy for stars brighter than 9th magnitude (van Leeuwen & Fantino, Astron. Astrophys. 439, 791, 2005; van Leeuwen, Astron. Astrophys. 474, 653, 2007). The Hipparcos Catalogue provided an extended dataset of very accurate astrometric data (positions, trigonometric parallaxes and proper motions), enlarging by two orders of magnitude the quantity and quality of distance determinations and luminosity calibrations. The availability of more than 20000 stars with a trigonometric parallax known to better than 10% opened the way to a drastic revision of our 3-D knowledge of the solar neighbourhood and to a renewal of the calibration of many distance indicators and age estimations. The prospects opened by Gaia, the next ESA cornerstone, planned for launch in June 2013 (Perryman et al., Astron. Astrophys. 369, 339, 2001), are still much more dramatic: a billion objects with systematic and quasi simultaneous astrometric, spectrophotometric and spectroscopic observations, about 150 million stars with expected distances to better than 10%, all over the Galaxy. All stellar distance indicators, in very large numbers, will be directly measured, providing a direct calibration of their luminosity and making possible detailed studies of the impacts of various effects linked to chemical element abundances, age or cluster membership. With the help of simulations of the data expected from Gaia, obtained from the mission simulator developed by DPAC, we will illustrate what Gaia can provide with some selected examples.Comment: 16 pages, 16 figures, Conference "The Fundamental Cosmic Distance scale: State of the Art and the Gaia perspective, 3-6 May 2011, INAF, Osservatorio Astronomico di Capodimonte, Naples. Accepted for publication in Astrophysics & Space Scienc

    BF models, Duality and Bosonization on higher genus surfaces

    Full text link
    The generating functional of two dimensional BFBF field theories coupled to fermionic fields and conserved currents is computed in the general case when the base manifold is a genus g compact Riemann surface. The lagrangian density L=dBAL=dB{\wedge}A is written in terms of a globally defined 1-form AA and a multi-valued scalar field BB. Consistency conditions on the periods of dBdB have to be imposed. It is shown that there exist a non-trivial dependence of the generating functional on the topological restrictions imposed to BB. In particular if the periods of the BB field are constrained to take values 4πn4\pi n, with nn any integer, then the partition function is independent of the chosen spin structure and may be written as a sum over all the spin structures associated to the fermions even when one started with a fixed spin structure. These results are then applied to the functional bosonization of fermionic fields on higher genus surfaces. A bosonized form of the partition function which takes care of the chosen spin structure is obtainedComment: 17 page

    Dichromatic state sum models for four-manifolds from pivotal functors

    Get PDF
    A family of invariants of smooth, oriented four-dimensional manifolds is defined via handle decompositions and the Kirby calculus of framed link diagrams. The invariants are parametrised by a pivotal functor from a spherical fusion category into a ribbon fusion category. A state sum formula for the invariant is constructed via the chain-mail procedure, so a large class of topological state sum models can be expressed as link invariants. Most prominently, the Crane-Yetter state sum over an arbitrary ribbon fusion category is recovered, including the nonmodular case. It is shown that the Crane-Yetter invariant for nonmodular categories is stronger than signature and Euler invariant. A special case is the four-dimensional untwisted Dijkgraaf-Witten model. Derivations of state space dimensions of TQFTs arising from the state sum model agree with recent calculations of ground state degeneracies in Walker-Wang models. Relations to different approaches to quantum gravity such as Cartan geometry and teleparallel gravity are also discussed
    corecore