36 research outputs found

    Cavity induced modifications to the resonance fluorescence and probe absorption of a laser-dressed V atom

    Full text link
    A cavity-modified master equation is derived for a coherently driven, V-type three-level atom coupled to a single-mode cavity in the bad cavity limit. We show that population inversion in both the bare and dressed-state bases may be achieved, originating from the enhancement of the atom-cavity interaction when the cavity is resonant with an atomic dressed-state transition. The atomic populations in the dressed state representation are analysed in terms of the cavity-modified transition rates. The atomic fluorescence spectrum and probe absorption spectrum also investigated, and it is found that the spectral profiles may be controlled by adjusting the cavity frequency. Peak suppression and line narrowing occur under appropriate conditions.Comment: 12 pages, 10 postscript figures, to be appeared in Phys. Rev.

    Resonance fluorescence and Autler-Townes spectra of a two-level atom driven by two fields of equal frequencies

    Get PDF
    We study the effects of driving a two-level atom by two intense field modes that have equal frequencies but are otherwise distinguishable; the intensity of one mode is also assumed to be greater than that of the other. We calculate first the dressed states of the system, and then its resonance fluorescence and Autler-Townes absorption spectra. We find that the energy spectrum of the doubly dressed atom consists of a ladder of doublet continua. These continua manifest themselves in the fluorescence spectrum, where they produce continua at the positions of the Mellow sideband frequencies omega(L)+/-2 Omega of the strong field, and in the Autler-Townes absorption spectrum, which becomes a two-continuum doublet

    Gain without population inversion in V-type systems driven by a frequency-modulated field

    Get PDF
    We obtain gain of the probe field at multiple frequencies in a closed three-level V-type system using frequency modulated pump field. There is no associated population inversion among the atomic states of the probe transition. We describe both the steady-state and transient dynamics of this system. Under suitable conditions, the system exhibits large gain simultaneously at series of frequencies far removed from resonance. Moreover, the system can be tailored to exhibit multiple frequency regimes where the probe experiences anomalous dispersion accompanied by negligible gain-absorption over a large bandwidth, a desirable feature for obtaining superluminal propagation of pulses with negligible distortion.Comment: 10 pages + 8 figures; To appear in Physical Review

    Quantum interference in a driven two-level atom

    Get PDF
    We show that a dynamical suppression of spontaneous emission, predicted for a three-level atom [S.-Y. Zhu and M. O. Scully, Phys. Rev. Lett. 76, 388 (1996)] can occur in a two-level atom driven by st polychromatic field. We find that the quantum interference, responsible for the cancellation of spontaneous emission, appears between different channels of transitions among the dressed states of the driven atom. We discuss the effect for bichromatic and trichromatic (amplitude-modulated) fields and fmd that these two cases lead to the cancellation of spontaneous emission in different parts of the fluorescence spectrum. Our system has the advantage of being easily accessible by current experiments. [S1050-2947(99)50712-9]

    Cavity QED analog of the harmonic-oscillator probability distribution function and quantum collapses

    Get PDF
    We establish a connection between the simple harmonic oscillator and a two-level atom interacting with resonant, quantized cavity and strong driving fields, which suggests an experiment to measure the harmonic-oscillator's probability distribution function. To achieve this, we calculate the Autler-Townes spectrum by coupling the system to a third level. We find that there are two different regions of the atomic dynamics depending on the ratio of the: Rabi frequency Omega (c) of the cavity field to that of the Rabi frequency Omega of the driving field. For Omega (c

    Resonance fluorescence spectrum of a two-level atom driven by a bichromatic field in a squeezed vacuum

    Get PDF
    The steady-state resonance fluorescence spectrum of a two-level atom driven by a bichromatic field in a broadband squeezed vacuum is studied. When the carrier frequency of the squeezed vacuum is tuned to the frequency of the central spectral line, anomalous spectral features, such as hole burning and dispersive profiles, can occur at the central line. We show that these features appear for wider, and experimentally more convenient, ranges of the parameters than in the case of monochromatic excitation. ?he absence of a coherent spectral component at the central line makes any experimental attempt to observe these features much easier. We also discuss the general features of the spectrum. When the carrier frequency of the squeezed vacuum is tuned to the first odd or even sidebands, the spectrum is asymmetric and only the sidebands an sensitive to phase. For appropriate choices of the phase the linewidths or only the odd or even sidebands can be reduced. A dressed-stale interpretation is provided

    Bichromatic electromagnetically induced transparency in cold rubidium atoms

    Full text link
    In a three-level atomic system coupled by two equal-amplitude laser fields with a frequency separation 2δ\delta, a weak probe field exhibits a multiple-peaked absorption spectrum with a constant peak separation δ\delta. The corresponding probe dispersion exhibits steep normal dispersion near the minimum absorption between the multiple absorption peaks, which leads to simultaneous slow group velocities for probe photons at multiple frequencies separated by δ\delta. We report an experimental study in such a bichromatically coupled three-level Λ\Lambda system in cold 87^{87}Rb atoms. The multiple-peaked probe absorption spectra under various experimental conditions have been observed and compared with the theoretical calculations.Comment: RevTex, 4 pages, 6 figures, Email address: [email protected]

    Quantum entanglement and disentanglement of multi-atom systems

    Full text link
    We present a review of recent research on quantum entanglement, with special emphasis on entanglement between single atoms, processing of an encoded entanglement and its temporary evolution. Analysis based on the density matrix formalism are described. We give a simple description of the entangling procedure and explore the role of the environment in creation of entanglement and in disentanglement of atomic systems. A particular process we will focus on is spontaneous emission, usually recognized as an irreversible loss of information and entanglement encoded in the internal states of the system. We illustrate some certain circumstances where this irreversible process can in fact induce entanglement between separated systems. We also show how spontaneous emission reveals a competition between the Bell states of a two qubit system that leads to the recently discovered "sudden" features in the temporal evolution of entanglement. An another problem illustrated in details is a deterministic preparation of atoms and atomic ensembles in long-lived stationary squeezed states and entangled cluster states. We then determine how to trigger the evolution of the stable entanglement and also address the issue of a steered evolution of entanglement between desired pairs of qubits that can be achieved simply by varying the parameters of a given system.Comment: Review articl
    corecore