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Resonance fluorescence and Autler-Townes spectra of a two-level atom driven by two fields
of equal frequencies
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2Department of Physics, The University of Queensland, Brisbane, Queensland 4072, Australia
(Received 6 August 1996

We study the effects of driving a two-level atom by two intense field modes that have equal frequencies but
are otherwise distinguishable; the intensity of one mode is also assumed to be greater than that of the other. We
calculate first the dressed states of the system, and then its resonance fluorescence and Autler-Townes absorp-
tion spectra. We find that the energy spectrum of the doubly dressed atom consists of a ladder of doublet
continua. These continua manifest themselves in the fluorescence spectrum, where they produce continua at the
positions of the Mollow sideband frequencies=2() of the strong field, and in the Autler-Townes absorption
spectrum, which becomes a two-continuum doul®1050-294@7)01202-X]

PACS numbgs): 42.50.Hz, 32.80-t

The radiative properties of two-level atoms driven by aeigenstatefi,N) (i =1,2), which satisfy the eigenvalue equa-
bichromatic field have been the subject of intense theoreticalon [6]
and experimental investigation in recent yefdrk These in- A
vestigations can be divided roughly into two categories: OO 2 ol
those in which the field components hawearly equal Rabi Hauli N) =7 No, 7 (L [1.N), @
frequencies, and those in which the intensities differ signifi-
cantly. where
For nearly equal intensities, the fluorescence, absorption, . _
and Autler-Townes spectra all consist of a series of features |1N)=sin6|a,N)+cosf|b,N—1), @
(equally) separated from each other by half the difference in _ o B
frequency between the driving field components. The num- |2N)=cosf|a,N)—sinf[b,N—1)

ber of these features, their widths, and their relative intensiare the(singly) dressed atom states withN)(I=a,b) the

ties depend on the Rabi frequencies of the driving fieldstate in which the atom is in staté) and N photons are
More recently, attention has turned to bichromatic excitatioryresent in the field mode. Heré,is given by

by one strong and one weak field component, and a different

set of features have been both predidi2band observed, in 1 A

Autler-Townes absorptiof8] and in fluorescencit]. In this cos 0= 27 20" )

case, multipeak features appear centeredaind at the

Mollow sideband frequencies, =2 associated with the where A=w —wq, 20=(A%+402)'? is the detuned Rabi

strong field component. The splittings and relative intensitiesrequency, 2,=g; N is the Rabi frequency at resonance,

within each multipeak feature depend in an intricate way orandg, is the atom-field coupling constant. The Hamiltonian

the detunings of the driving field components and on theof the secondweakej field mode has the eigenvalue equa-

ratio « of the Rabi frequency of the weak field to that of the tion

strong. Furthermore, a8 increases, additional features ap-

pear, centered ab, +=n2Q), wheren is an integer. Hwln)=nf o [n), 4
This novel behavior has led us to consider the case of . . . '

bichromatic excitation by two field modes, one strong andand 'the_ noninteracting smgly. dressed—aﬂowe_ak field

one weaker, which have equal frequencigsbut are other- HamiltonianH,=Ha, +Hy the eigenvalue equation

wise distinguishable. Our system consists of a two-level A

atom with excited statéb), ground statéa), and transition Hgli,N—n;n)=%|Nw — =—(—1)'Q[|i,N—n;n). (5)

frequencywy. The atom is driven by two field modes, whose 2

frequenciesy, are tuned close tay. The strongefweakej e . _ o

laser field has Rabi frequency)2(2G). We use the doubly ;?iiitztatessétl,N ofn’n>d(|ef:]’eNnerna;tré>) gta?e,i’wwiIﬁrm eir;:rgy

dressed atom modé¢b], first coupling the bare atom to the A[Nw,— A2+ Q] (A[New,—A/2—Q]) [Fig. 1@)].

stronger field, next co_upling the _resulting “s_ingly dressed” When we include the interaction between the singly
atom to the weaker field, and finally a_lllowmg the doub'Iy gressed atom and the weaker field
dressed atom to decay spontaneously into the vacuum field.

The model is valid in the limitsw ~wy>20>2G>T, V=hg,(a*S +Sta), (6)
wherel is the rate of spontaneous emission to the vacuum
modes. whereS" (S7) is the atomic raisinglowering) operator, the

The HamiltonianH 5, of the atomtstrong field mode has degeneracy is lifted. Fof)>G the coupling between the
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¢ZG (NIN|STIN=122")=(cogh) (A +\"), (133

N+1 |20 1=

(N2X|STIN—1IN")=—(sirPH) S(N+N"), (13b

e

L (NIN[STIN=1iN")=—(—1)!(sing)(cosh) S(A—\").
(130

The difference in sign within the arguments of the delta
functions in the matrix elements corresponding to the triplet
sideband$Eqgs.(13a, (13b)] and the central componefiq.

L (130] is important, and originates from the parity of the

eigenstates,

N [ -1

e

$a(—X)=(=1)"pn(x). (14)

The time evolution of the system is governed by the reduced
atomic density operatgs, which obeys the master equation

N-1 20 -1

(a) (b) ,
p : 1 +Q— +Q— - ot

_ St~ 7 [Hpl=5T(S7S p+pS'S —25pS"),
FIG. 1. Energy level spectra of th@) singly dressed ancb) 15
doubly dressed atom. (15)

whereH=H4+V. With this equation we can derive equa-
tions of motion for the reduced populations of the dressed
states and the coherences between dressed states of neigh-
v — (i,N—n:n|V]i,N—m:m) boring manifolds. We consider first the situation in which the
nm-oAD ’ ' ’ relative phase of the two driving field components is not kept
=—(=1)hg(Yn+ 16,1+ N8, 1m), (7) constant throughout the experiment, and the driving field
' ’ modes can therefore be represented by number $tites
where g=g, sinfd cosd. This matrix has the same form as
that which represents the position operator in the basis pro- I. POPULATIONS
vided by the energy eigenstates of the one-dimensional har-
monic oscillator [7]. Its eigenvalues may be written as  Following the method of Cohen-Tannoudji and Reynaud
—(—=1)'\ig, —o<\<w, and the total Hamiltonian of the [8], we project the master equatigh5) onto |Ni\) on the

{{1N—n;n)} and{|2,N—n;n)} manifolds is negligible, and
the interactionv has matrix elementy (). given by

systemH,+V satisfies the eigenvalue equation right and(Ni\| on the left and sum oveX; we thus obtain
_ 0 I the following set of coupled equations for the populations
(Hg+V)|NiX)=EN)|Ni)), ® P\t
where A Pi(\,t)= —T(cofg) P, (A1) +T(sinf @) Po(\, 1),
EG=%|No,— =—(—1)(Q+\ } 9 : (16)
NA o= 5 (=D 9) © Po(N\,t)=—T(si* @) Po(\,t) + ' (cog ) Py(\,t).

Here P;(\,t)==\Pin(N 1), Pin(N, 1) =(NiX|p(t)|Ni)),
and we assume th&t,(—\,t) =P;iy(\,t).
The steady-state solution of E@.6) is easily found to be

Pi(\) sin'e
) B,(N)  codd’ (17

We see that the population distribution between correspond-
ing states of the two continua is the same as that between the
dressed states of a two-level atom driven by a single laser
field [6]. However, within each continuum the population

li,N—n;n), (10

- DY
Ni\)= —(-1) —
[Ni)) §O¢n{ (-1

and

bn(X)= (272! >—1’2Hn<x>exp( - % X2

In Eq. (11), ¢,(x) is the harmonic oscillator eigenfunction
andH (x) the Hermite polynomial of order. The eigenvec-
tors obey the orthonormality and completeness relations

(NIN|NTTN Y= Syn Sii  O(N—N") distribution depends oi: If there areM photons in laser
mode 2, the populationB;(\) are given by
and o 2
) . P (\)= sin™ o A
2
Electric dipole radiative transitions by the system are al- p B cos'o A 18
lowed between states in neighboring manifole®N) and Z(A)_sin40+coé‘0 M| (18)

e(N—1). Using the orthonormality and completeness rela-
tions, we easily verify that the nonvanishing matrix elementsavhere ¢, (A\/v2) is given by Eq.(10). The populations are a
of the atomic raising operat@* are given by maximum for Av2 in the vicinity of the classical turning
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points of the harmonic oscillator eigenfunctiaty,(\/v2),  where p,(\N)=Zyp {A(\N'). Similarly, the dipole mo-
i.e., for \y~=*2JyM+1/2, or for energies|\y|ig  ment atw —2() evolves according to the equation

~2fig\M =2(sin6)(cosH) G. For |\|<|\y|, the populations
P;(\) are smaller, but nonzero. Fpi{>|\y|, P;(\) goes rap-

por(MN)= —{F((sinze)(co§0)+ %

idly to zero.
To calculate the spectra, we require the time evolution of
the average value of the raising part of the atomic dipole +i[w,_—29+()\—)\’)g]]p21()\,7\’).
operator
pt=p> JJd)\ d\/|NiX) (22)
i,J,N
X{NIN|STIN=LjN"){N—1j\’| For the central component at , we project the master equa-

tion (15) onto[N—1i\") on the right and Ni\| on the left

_ ro A (+) , (i=1,2), and sum oveN. This results in the following two
'LL%"N f f dh A iy WA D pijd (W), (19) coupled equations of motion:

AN H + 1! . . , ,

whereuij (LA =(NINSTIN=1j1") and prAA) = ~{T'(c0$6) +ilw + (A~ \")gl}praA,\)
PN =ININ(N=1j)| (20) +T(SiM0) pys( AN, (23)

is an off-diagonal element of the density operator. Since the . ) ) ) ) )
continua of the dressed states do not overlap, we can apply P22\ ") =—{[(sir*0) +i[w + (N =\")gl}p2oN ")
the secular approximatidi®,8], which allows us to consider ,
transitions between the two manifolds as appearing at three +T(cos0)pui(AA").
significantly different frequencies. We consider first the av-
erage dipole moment ab_+2(), by projecting the master

equation(15) onto [N—12\") on the right and N1\ | on the II. FLUORESCENCE SPECTRUM
left and then summing oveé. This results in the equation of ¢ fiyorescence spectrum is given by the real part of the
motion 1 Fourier transform of the two-time correlation function of the
p1A N N)= —‘F((sinze)(cosza)ﬂL E) dipole-moment operatofu* (t+ 7)u~(t)), 7>0. From the
guantum regression theoreff], it is well known that for

70 the two-time averagéu ™ (t+7)u (1)) satisfies the
+i[w,_+29+(>\—)\’)g]]plz()\,h’), same equation of motion as the one-time avergge(7).
The equation of motion fofu (7)) is obtained from Eq(19)
(21 in the form

<ﬂ+(7)>=f f d\ d\'{(sin6)(cosH)[ p11(A,N") = p2a A, N ) TSN =N") +(cOS 6) p1o A, N ) SN+ N)

—(sir?6) poy(A,N) S(N+N")}, (24

wherep;;(\,\") are given in Eqs(21)—(23). The spectrum is then obtained as the real part of the Fourier transform of the
two-time correlation functiofu ™ (t+ 7). (t)), and is given by

T 2o co2d)| s (sif@—cog'9)? [ 2(sirf6)(coso))? Iy
S(w)= 71 (SiM6)(cos'0)) m(w=w,) (siffg+code)? " | sino+cosd | (0—w )2+T2
(sin*6)(cos'6) Md)\ N I, . I, -
(sif6+cos6) | .. |Su(Mv2)] (0—w —20-2\g)%+T2  (0— o +2Q-2\g)°+T3/ |’ @9
|
whereI' . =I"(sir’6)(cos6)+1/2] and szl“(sin46+co§‘6). consists of a convolution of Lorentzian functions, centered at

We find that the presence of the second weaker field ofy, + 20 +2\g and having widtH', multiplied by a weight

the same frequency as the first leads to a modification of the, ., MVD)I2 reflecting the steadv-state populations of
Rabi sidebands, while the central component remains un- [P V2 g y bop

changed. In Fig. 2, we ploB(w) for A=0, 20=40T, and the eigenstates of energy#iQ+\%g. Becausd ¢y (AMV2)|?

different G. The spectrum exhibits a central component,'@aches a maximum near the classical tur.ning pdmﬁﬁ
identical to that of the Mollow triplet, together with broad- ~2\M and then goes rapidly to zero, the sidebands display
ened sideband continua centeredogt-2(). Each sideband- peaks nearo~w =20 +2G, with continua between the
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FIG. 2. The fluorescence spectriw) for w_ =wy, 20=40r", FIG. 3. The Autler-Townes absorption spectruftiw) for
and(a) 2G=7.1,(b) 2G=14.2. w =wy, 20=40T", and(a) 2G=7.1, (b) 2G=14.2.

peaks, and then go rapidly to zero.

We point out that the absence of change in the centr
component of the spectrum is ultimately traceabieath-
ematically to the minus sign in the argument of the delta
function in the transition elements of E¢L3c), while the
broadening of the sidebands arises from the plus sign in th
delta functions in Eqs(1338 and (13b).

hereI” is the natural width of levelc), T';=T" cog ¢ and
,=I"sir? 6. Each doublet feature consists of a convolution
of Lorentzian lines, with each line weighted by the steady-
state populatiof?;(\) of the level from which the absorption
%riginates and the transition rate|@). In Fig. 3 we plot the
utler-Townes spectra foh=0, 20=40I", and differentG.
We see that in this case each doublet component is broad-
Il AUTLER-TOWNES ABSORPTION SPECTRUM ened into a continuum centered @t,+A/2+(), consisting
of a convolution of appropriately weighted Lorentzian func-
If the system is probed by tuning a low-intensity laser intions. These continua display maxima near,+ A/2
the vicinity of the transition frequency between one of the= )+ G, and then rapidly go to zero.
resonantly coupled atomic levelga), say and a third In summary, we have investigated analytically the fluo-
atomic level (c)), the Autler-Townes absorption spectrum is rescence and Autler-Townes spectra of a two-level atom
observed. For a monochromatic intense driving field, thisdriven by two fields of equal frequencies. The spectra differ
spectrum consists of a doublet, separated by the Rabi fregualitatively from both the monochromatic driving field case
guency 2) of the field[6]. The weight of each component is and the bichromatic case with two fields of unequal frequen-
proportional to the product of the steady-state population oties[1-4]. In the fluorescence spectrum, the presence of a
the level|i,N) from which the absorption originates and the weaker field of the same frequency leads to a broadening of
transition rate from|i,N) to |c,N), proportional to the Rabi sidebands of the strong field into continua of width

[<a,Nji,N)J%. ~4G, whereas the central component remains unchanged. In
Analogously, in our bichromatically driven system, the the Autler-Townes spectrum, the doublet components are
Autler-Townes spectrum is calculated to be broadened into continua of width2G. We have interpreted
r 1 the spectral features in terms of the dressed states of the
_ - 2 system and transitions among them: These dressed states are
AlO)= T S o+ coda j,de(ﬁM(M/?)' grouped within two continua separated by the Rabi fre-
) , quency of the strong field; the bandwidth of each continuum
« sin* (I +1')/2 is determined by the Rabi frequency of the weak field.
(0= wea— A2+ Q—\Q)%+ L (I'"+T,)2 An experiment was performed recenfl§] studying the
Autler-Townes spectrum of a probe beam monitoring a two-
N codg(I'' +T,)/2 level transition of a three-level vee system driven by two

laser fields of the same frequency, but significantly different
intensities and uncoordinated relative phase. The observed
(26) spectrum was composed of two continuum structures sepa-

(0= wea— AI2—Q—NQ)?+ (T +T,)?
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rated by the Rabi frequency of the strong field, while thebe reported in detail elsewhegrdhe average electric field of
bandwidths of the continua were equal to the Rabi frequencynode 2 can be written

of the weak field. Our theoretical predictions of the spectrum

completely agree with this experimental observation. E=E,cof(w_+ 6)t]

IV. FIXED RELATIVE PHASE OF THE DRIVING = (Ecosdt)cosw t+ (E,sindt)sinw t. (27)

FIELD COMPONENTS .
Because é<w_,I' (of order Hertz, experimentally each

It is interesting to regard this problem from the point of atom follows the coét (and sirdt) time behavior adiabati-
view of fluctuating driving fields. In Ref[3], the experi- cally. For optical-frequency driving fields, the wavelength
ments were performed using two driving fields, each intenis much smaller than the dimensions of the sample, and the
sity and phase stabilized so that for each mode the correlapectra must still be averaged over the different relative
tion times for both slow and fast fluctuationg; and 7.,  phases experienced by the different atoms: Again, the spectra
respectively[10], were very largeG> 74, ;1. However, will involve continua, as with random relative phases. For
the phases of the modes were not interlocked, and signahdio-frequency driving fields however, the atoms experience
averaging was employed, so that their relative phase wage same relative phase. F6=0, a normal Autler-Townes
random. In this situation, it is sufficient in practice to repre-doublet is observed, with Rabi frequency corresponding to
sent the driving field(two uncorrelated phase-diffusion the (vecto) sum of the two electric fields. For small but
modes, each with zero bandwidithy number(Fock) states, nonzerods, the doublet components are observed to move

rather than requiring a cohere(@laubey state representa- about the central frequencies,,+A/2=(, with amplitude
tion: They produce the same resuftsl]. Very recently, G [12].

however, Autler-Townes absorption spectra were observed
with the relative phases of the field modes kept coordinated
and no signal averaging employed. Furthermore, the fre-
quency of the weaker field was,=w, + &, where, < ,I This research was supported in part by the Australian Re-
[12]. To describe this situation theoretically, the field modessearch Council and the Natural Sciences and Engineering
mustbe represented by coherent states. The results of thiResearch Council of Canada. We acknowledge useful dis-
calculation can be described simply, however, and(alss)  cussions with Peter Drummond, Neil Manson and
in agreement with the experimental observatiomkich will Changjiang Wei.
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