8,357 research outputs found

    Increase of an introduced bird competitor in old-growth forest associated with restoration

    Get PDF
    Many successful invasions involve long initial periods in which the invader exists at low densities followed by sudden population increases. The reasons for such time-lags remain poorly understood. Here we document a sudden increase in density of the introduced Japanese white-eye (Zosterops japonicus) in a restoration area contiguous with old-growth forest at Hakalau Forest National Wildlife Refuge on the Island of Hawaii. The refuge, with very high density of native birds, existed in a pocket of low whiteeye density that persisted for at least 20 years since the late 1970s. The refuge began an extensive native trees restoration project in 1989 within a 1314 ha abandoned pasture above old-growth forest. This area was soon colonized by white-eyes and their population grew exponentially once the trees had grown tall enough to develop a canopy. This increase was in turn followed by significantly more white-eyes in the open and closed forests adjacent to the restoration area. Competition between white-eyes and native species was documented on study sites within these forests. Density data indicate that competition was more widespread, with loss of tens of thousands of native birds in the 5371 ha area surveyed. Our results are consistent with the view that ecological barriers may delay the population increase of invaders and that human-derived activities may help invaders cross these barriers by creating new ecological opportunities. Control of white-eye numbers may be essential for recovery of native species

    Asymptotic integration algorithms for nonhomogeneous, nonlinear, first order, ordinary differential equations

    Get PDF
    New methods for integrating systems of stiff, nonlinear, first order, ordinary differential equations are developed by casting the differential equations into integral form. Nonlinear recursive relations are obtained that allow the solution to a system of equations at time t plus delta t to be obtained in terms of the solution at time t in explicit and implicit forms. Examples of accuracy obtained with the new technique are given by considering systems of nonlinear, first order equations which arise in the study of unified models of viscoplastic behaviors, the spread of the AIDS virus, and predator-prey populations. In general, the new implicit algorithm is unconditionally stable, and has a Jacobian of smaller dimension than that which is acquired by current implicit methods, such as the Euler backward difference algorithm; yet, it gives superior accuracy. The asymptotic explicit and implicit algorithms are suitable for solutions that are of the growing and decaying exponential kinds, respectively, whilst the implicit Euler-Maclaurin algorithm is superior when the solution oscillates, i.e., when there are regions in which both growing and decaying exponential solutions exist

    A viscoplastic model with application to LiF-22 percent CaF2 hypereutectic salt

    Get PDF
    A viscoplastic model for class M (metal-like behavior) materials is presented. One novel feature is its use of internal variables to change the stress exponent of creep (where n is approximately = 5) to that of natural creep (where n = 3), in accordance with experimental observations. Another feature is the introduction of a coupling in the evolution equations of the kinematic and isotropic internal variables, making thermal recovery of the kinematic variable implicit. These features enable the viscoplastic model to reduce to that of steady-state creep in closed form. In addition, the hardening parameters associated with the two internal state variables (one scalar-valued, the other tensor-valued) are considered to be functions of state, instead of being taken as constant-valued. This feature enables each internal variable to represent a much wider spectrum of internal states for the material. The model is applied to a LiF-22 percent CaF2 hypereutectic salt, which is being considered as a thermal energy storage material for space-based solar dynamic power systems

    The order of curvature operators on loop groups

    Full text link
    For loop groups (free and based), we compute the exact order of the curvature operator of the Levi-Civita connection depending on a Sobolev space parameter. This extends results of Freed and Maeda-Rosenberg-Torres.Comment: to appear in Letters in Mathematical Physic

    Viscoplasticity: A thermodynamic formulation

    Get PDF
    A thermodynamic foundation using the concept of internal state variables is given for a general theory of viscoplasticity, as it applies to initially isotropic materials. Three fundamental internal state variables are admitted. They are: a tensor valued back stress for kinematic effects, and the scalar valued drag and yield strengths for isotropic effects. All three are considered to phenomenologically evolve according to competitive processes between strain hardening, strain induced dynamic recovery, and time induced static recovery. Within this phenomenological framework, a thermodynamically admissible set of evolution equations is put forth. This theory allows each of the three fundamental internal variables to be composed as a sum of independently evolving constituents

    A theory of viscoplasticity accounting for internal damage

    Get PDF
    A constitutive theory for use in structural and durability analyses of high temperature isotropic alloys is presented. Constitutive equations based upon a potential function are determined from conditions of stability and physical considerations. The theory is self-consistent; terms are not added in an ad hoc manner. It extends a proven viscoplastic model by introducing the Kachanov-Rabotnov concept of net stress. Material degradation and inelastic deformation are unified; they evolve simultaneously and interactively. Both isotropic hardening and material degradation evolve with dissipated work which is the sum of inelastic work and internal work. Internal work is a continuum measure of the stored free energy resulting from inelastic deformation

    Steady-state and transient Zener parameters in viscoplasticity: Drag strength versus yield strength

    Get PDF
    A hypothesis is put forth which enables the viscoplastician to formulate a theory of viscoplasticity that reduces, in closed form, to the classical theory of creep. This hypothesis is applied to a variety of drag and yield strength models. Because of two theoretical restrictions that are a consequence of this hypothesis, three different yield strength models and one drag strength model are shown to be theoretically admissible. One of these yield strength models is selected as being the most appropriate representation for isotropic hardening

    Swastika: A New Symbolic Interpretation

    Get PDF
    Paper by Stanley A. Freed and Ruth S. Free

    Generation of electron spin polarization in disordered organic semiconductors

    Full text link
    The generation mechanisms of electron spin polarization (ESP) of charge carriers (electrons and holes, called "doublets") in doublet-doublet recombination and triplet-doublet quenching in disordered organic semiconductors are analyzed in detail. The ESP is assumed to result from quantum transitions between the states of the spin Hamiltonian of the pair of interacting particles. The value of the ESP is essentially determined by the mechanism of relative motion of particles. In our work we have considered the cage and free diffusion models. The effect of possible attractive spin-independent interactions between particles is also analyzed. Estimation with obtained formulas shows that the proposed mechanisms can lead to a fairly strong ESP much larger than the thermal one (at room temperatures)Comment: 10 pages, 3 figure

    Magnetic field effects on electron-hole recombination in disordered organic semiconductors

    Full text link
    Characteristic properties of magnetic field effects on spin selective geminate and bulk electron-hole polaron pair (PP) recombination are analyzed in detail within the approach based on the stochastic Liouville equation. Simple expressions for the magnetic field (B) dependence of recombination yield and rate are derived within two models of relative PP motion: free diffusion and diffusion in the presence of well (cage). The spin evolution of PPs is described taking in account the relaxation induced by hyperfine interaction, anisotropic part of the Zeeman interaction induced, as well as Δg\Delta g-mechanism. A large variety of the BB-dependences of the recombination yield Y(B)Y(B) and rate K(B)K(B) is obtained depending on the relative weights of above-mentioned mechanisms. The proposed general method and derived particular formulas are shown to be quite useful for the analysis of recent experimental results.Comment: 12 pages, 3 figure
    • …
    corecore