4,579 research outputs found

    Energy absorption device Patent

    Get PDF
    Energy absorption device in high precision gear train for protection against damage to components caused by stop load

    Orientations of the lamellar phase of block copolymer melts under oscillatory shear flow

    Full text link
    We develop a theory to describe the reorientation phenomena in the lamellar phase of block copolymer melt under reciprocating shear flow. We show that similar to the steady-shear, the oscillating flow anisotropically suppresses fluctuations and gives rise to the parallel-perpendicular orientation transition. The experimentally observed high-frequency reverse transition is explained in terms of interaction between the melt and the shear-cell walls.Comment: RevTex, 3 pages, 1 figure, submitted to PR

    The effect of shear on persistence in coarsening systems

    Full text link
    We analytically study the effect of a uniform shear flow on the persistence properties of coarsening systems. The study is carried out within the anisotropic Ohta-Jasnow-Kawasaki (OJK) approximation for a system with nonconserved scalar order parameter. We find that the persistence exponent theta has a non-trivial value: theta = 0.5034... in space dimension d=3, and theta = 0.2406... for d=2, the latter being exactly twice the value found for the unsheared system in d=1. We also find that the autocorrelation exponent lambda is affected by shear in d=3 but not in d=2.Comment: 6 page

    Orientational phase transitions in the hexagonal phase of a diblock copolymer melt under shear flow

    Get PDF
    We generalize the earlier theory by Fredrickson [J. Rheol. v.38, 1045 (1994)] to study the orientational behaviour of the hexagonal phase of diblock copolymer melt subjected to steady shear flow. We use symmetry arguments to show that the orientational ordering in the hexagonal phase is a much weaker effect than in the lamellae. We predict the parallel orientation to be stable at low and the perpendicular orientation at high shear rates. Our analysis reproduces the experimental results by Tepe et al. [Macromolecules v.28, 3008 (1995)] and explains the difficulties in experimental observation of the different orientations in the hexagonal phase.Comment: 21 pages, 6 eps figures, submitted to Physical Review

    Bulletin No. 350 - Cemeteries of Box Elder and Summit Counties

    Get PDF
    One of man\u27s greatest challenges is to build institutions that adequately meet basic needs. A cemetery is a social institution invented to take care of needs related to the dead. Times and conditions change. A design which seemed adequate when initiated may soon become archaic and out-moded if it is not modified in the light of new discoveries. This study raises many issues about cemeteries. As one reads the bulletin many questions concerning the nature and function of other institutions arise. What is their condition in contrast with the cemeteries? This publication, the first in an institution series planned by the authors, suggests that the cemeteries when measured by reasonable standards appear to be sub-standard in many places. What functions in addition to burial should cemeteries perform? Under what conditions can cemeteries have greater significance and meaning to the people? This study is an appraisal of one institution. Can cemeteries or other institutions be effective if they are not subjected to regular appraisal

    Derivation of an Abelian effective model for instanton chains in 3D Yang-Mills theory

    Full text link
    In this work, we derive a recently proposed Abelian model to describe the interaction of correlated monopoles, center vortices, and dual fields in three dimensional SU(2) Yang-Mills theory. Following recent polymer techniques, special care is taken to obtain the end-to-end probability for a single interacting center vortex, which constitutes a key ingredient to represent the ensemble integration.Comment: 18 pages, LaTe

    Facilitated spin models: recent and new results

    Full text link
    Facilitated or kinetically constrained spin models (KCSM) are a class of interacting particle systems reversible w.r.t. to a simple product measure. Each dynamical variable (spin) is re-sampled from its equilibrium distribution only if the surrounding configuration fulfills a simple local constraint which \emph{does not involve} the chosen variable itself. Such simple models are quite popular in the glass community since they display some of the peculiar features of glassy dynamics, in particular they can undergo a dynamical arrest reminiscent of the liquid/glass transitiom. Due to the fact that the jumps rates of the Markov process can be zero, the whole analysis of the long time behavior becomes quite delicate and, until recently, KCSM have escaped a rigorous analysis with the notable exception of the East model. In these notes we will mainly review several recent mathematical results which, besides being applicable to a wide class of KCSM, have contributed to settle some debated questions arising in numerical simulations made by physicists. We will also provide some interesting new extensions. In particular we will show how to deal with interacting models reversible w.r.t. to a high temperature Gibbs measure and we will provide a detailed analysis of the so called one spin facilitated model on a general connected graph.Comment: 30 pages, 3 figure

    Evidence of a Critical time in Constrained Kinetic Ising models

    Get PDF
    We study the relaxational dynamics of the one-spin facilitated Ising model introduced by Fredrickson and Andersen. We show the existence of a critical time which separates an initial regime in which the relaxation is exponentially fast and aging is absent from a regime in which relaxation becomes slow and aging effects are present. The presence of this fast exponential process and its associated critical time is in agreement with some recent experimental results on fragile glasses.Comment: 20 Pages + 7 Figures, Revte
    • …
    corecore