413 research outputs found
Pinnatiphycus menouana gen. et sp. nov. (Rhodophyta: Dicranemataceae) from New Caledonia and Fiji (South Pacific): vegetative and reproductive morphology and molecular phylogeny
A new tropical genus and species belonging to the family Dicranemataceae, Pinnatiphycus menouana, is described from lagoon and outer reef-slope habitats in New Caledonia and Fiji. The new genus differs from other members of the family by the unique combination of the following characters: (1) tetrasporangia borne in terminal nemathecia on lateral cylindrical branchlets; and (2) the disposition of cystocarps along lateral branchlets rather than on the main axis itself. The new species differs from Peltasta australis J. Agardh by the presence of cylindrical lateral branchlets along the flattened main axes and the occurrence of reproductive structures in terminal, subterminal or basal positions on the lateral branchlets. It differs from subtropical Reptataxis rhizophora (Lucas) Kraft from Lord Howe Island by the presence of both yellowish refractive medullary cell clusters and cylindrical lateral branches bearing subapical tetrasporangial sori and cystocarps, as well as a central fusion cell and the production of carposporangia in chains of two to three rather than four to six. rbcL molecular analysis of Fijian samples unequivocally places the genus in the family Dicranemataceae with 100% bootstrap support, strongly relating it to two species of Tylotus. The family itself, however, received only weak bootstrap support (66%) for distinguishing it from the clade containing the virtually Australian-endemic families Mychodeaceae and Acrotylaceae. Pinnatiphycus favors deepwater habitats (65–70 m) with low light intensities or shallower (, 30 m) but turbid high-current areas, which may have contributed to it being overlooked in the past
Relationship between dielectric properties and critical behavior of the electric birefringence in binary liquid mixtures
We present experimental results on the critical exponent ψEKE describing the divergence of the Kerr constant of binary liquid mixtures near the critical consolute point. We show that the measured value of ψEKE agrees with the theoretical prediction only if the measurement is performed with a mixture of two liquids presenting a small mismatch in the dielectric constant, and that the measured ψEKE grows as the dielectric constant mismatch increases. Such findings are consistent with a recent model which assumes that the elongation of critical fluctations along the direction of the electric field can become so strong that fluctuations in the direction perpendicular to the electric field may cross over from Ising to mean-field behavior
Multilocus phylogeny reveals <i>Gibsmithia hawaiiensis</i> (Dumontiaceae, Rhodophyta) to be a species complex from the Indo-Pacific, with the proposal of <i>G. eilatensis</i> sp. nov.
Gibsmithia hawaiiensis is a peculiar red alga characterized by furry gelatinous lobes arising from a cartilaginous stalk. The species has been recorded from tropical reef systems throughout the Indo-Pacific. A multilocus phylogeny (UPA, rbcL, COI-5P) of 36 specimens collected throughout the species distribution range, showed high genetic diversity at species level. Two major groups were identified, each consisting of multiple lineages. Genetic variability was low in the Hawaiian Islands and the northern Red Sea and high in the Western Indian Ocean and the Coral Triangle, where lineages overlap in distribution. Genetic distances suggest that G. hawaiiensis represents a complex of five cryptic species, with no difference observed in the external morphology corresponding to separate lineages. Anatomical and reproductive differences were observed at the microscopic level for the lineage from the Red Sea, which is here described as G. eilatensis sp. nov. The geographic range of the species complex is here expanded to include Madagascar, the Red Sea and the Indo-Malay region, and the generitype seems endemic to the Hawaiian Islands. Algal diversity on coral reef systems is discussed from a conservation perspective using G. hawaiiensis as an example
Chloroplast phylogenomic analyses reveal the deepest-branching lineage of the Chlorophyta, Palmophyllophyceae class. nov.
The green plants (Viridiplantae) are an ancient group of eukaryotes comprising two main clades: the Chlorophyta, which includes a wide diversity of green algae, and the Streptophyta, which consists of freshwater green algae and the land plants. The early-diverging lineages of the Viridiplantae comprise unicellular algae, and multicellularity has evolved independently in the two clades. Recent molecular data have revealed an unrecognized early-diverging lineage of green plants, the Palmophyllales, with a unique form of multicellularity, and typically found in deep water. The phylogenetic position of this enigmatic group, however, remained uncertain. Here we elucidate the evolutionary affinity of the Palmophyllales using chloroplast genomic, and nuclear rDNA data. Phylogenetic analyses firmly place the palmophyllalean Verdigellas peltata along with species of Prasinococcales (prasinophyte clade VI) in the deepest-branching clade of the Chlorophyta. The small, compact and intronless chloroplast genome (cpDNA) of V. peltata shows striking similarities in gene content and organization with the cpDNAs of Prasinococcales and the streptophyte Mesostigma viride, indicating that cpDNA architecture has been extremely well conserved in these deep-branching lineages of green plants. The phylogenetic distinctness of the Palmophyllales-Prasinococcales clade, characterized by unique ultrastructural features, warrants recognition of a new class of green plants, Palmophyllophyceae class. nov
Ocean forests: breakthrough yields for macroalgae
The US Department of Energy Advanced Research Projects Agency - Energy (ARPA-E) MacroAlgae Research Inspiring Novel Energy Research (MARINER) program is encouraging technologies for the sustainable harvest of large funding research of macroalgae for biofuels at less than $80 per dry metric ton (DMT). The Ocean Forests team, led by the University of Southern Mississippi, is developing a complete managed ecosystem where nutrients are transformed and recycled. The team’s designs address major bottlenecks in profitability of offshore aquaculture systems including economical moored structures that can withstand storms, efficient planting, managing and harvesting systems, and sustainable nutrient supply. The work is inspired by Lapointe who reported yields of Gracilaria tikvahiae equivalent to 127 DMT per hectare per year (compared with standard aquaculture systems in the range of 20 to 40 DMT/ha/yr). This approach offers the potential for breakthrough yields for many macroalgae species. Moreover, mini-ecosystems in offshore waters create communities of macroalgae, shellfish, and penned finfish, supplemented by visiting free-range fish that can increase productivity, produce quality products, and create jobs and income for aquafarmers. Additional benefits include reduced disease in fish pens, cleaning contaminated coastal waters, and
maximizing nutrient recycling. Cost projections for a successful, intensive, scaled system are competitive with current prices for fossil fuels
Deep-water macroalgae from the Canary Islands: new records and biogeographical relationships
Due to the geographical location and paleobiogeography of the Canary Islands, the
seaweed flora contains macroalgae with different distributional patterns. In this contribution, the biogeographical relations of several new records of deep-water macroalgae recently collected around the Canarian archipelago are discussed. These are Bryopsidella neglecta (Berthotd) Rietema,Discosporangium mesarthrocarpum (Meneghini) Hauck, Hincksia onslowensis (Amsler et Kapraun)P.C. Silva, Syringoderma floridana Henry, Peyssonnelia harveyana J. Agardh, Cryptonemia seminervis(C. Agardh) J. Agardh, Botryodadia wynnei Ballantine, Gloiocladia blomquistii (Searles) R. E.Norris, PIahchrysis peltata (W. R. Taylor) P. Huv4 et H. Huv4, Leptofauchea brasiliensis Joly, and Sarcodiotheca divaricata W. R. Taylor. These new records, especially those in the Florideophyceae,support the strong affinity of the Canary Islands seaweed flora with the warm-temperate Mediterranean-Atlantic region. Some species are recorded for the first time from the east coast of the Atlantic Ocean, enhancing the biogeographic relations of the Canarian marine flora with that of the western Atlantic regions
The Reinstatement Of Hydropuntia Montagne (Gracilariaceae, Rhodophyta)
Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/149772/1/tax00982.pd
What can the Gulf of Mexico and Panama tell us about education and outreach?
ABSTRACT: A series of research grants funded by the National Science Foundation involved a major component about education and outreach as it pertained to marine algal diversity. These included comprehensive studies into 1) the diversity of the deep bank marine algae in the Gulf of Mexico (NSF Biodiversity Surveys and Inventories program) and the discovery of unsuspected eukaryotic life inhabiting rhodolith forming coralline algae (NSF DEB), 2) monographic research (NSF PEET), 3) advanced tropical
phycology with the integration of modern and traditional techniques in the study of tropical algae of Panama (NSF PASI), among others.info:eu-repo/semantics/publishedVersio
Novel Colicin F-Y of Yersinia frederiksenii Inhibits Pathogenic Yersinia Strains via YiuR-Mediated Reception, TonB Import, and Cell Membrane Pore Formation
A novel colicin type, designated colicin F-Y, was found to be encoded and produced by the strain Yersinia frederiksenii Y27601. Colicin F-Y was active against both pathogenic and nonpathogenic strains of the genus Yersinia. Plasmid YF27601 (5,574 bp) of Y. frederiksenii Y27601 was completely sequenced. The colicin F-Y activity gene (cfyA) and the colicin F-Y immunity gene (cfyI) were identified. The deduced amino acid sequence of colicin F-Y was very similar in its C-terminal pore-forming domain to colicin Ib (69% identity in the last 178 amino acid residues), indicating pore forming as its lethal mode of action. Transposon mutagenesis of the colicin F-Y-susceptible strain Yersinia kristensenii Y276 revealed the yiuR gene (ykris001_4440), which encodes the YiuR outer membrane protein with unknown function, as the colicin F-Y receptor molecule. Introduction of the yiuR gene into the colicin F-Y-resistant strain Y. kristensenii Y104 restored its susceptibility to colicin F-Y. In contrast, the colicin F-Y-resistant strain Escherichia coli TOP10F' acquired susceptibility to colicin F-Y only when both the yiuR and tonB genes from Y. kristensenii Y276 were introduced. Similarities between colicins F-Y and Ib, similarities between the Cir and YiuR receptors, and the detected partial cross-immunity of colicin F-Y and colicin Ib producers suggest a common evolutionary origin of the colicin F-Y-YiuR and colicin Ib-Cir systems
Full Sequence and Comparative Analysis of the Plasmid pAPEC-1 of Avian Pathogenic E. coli χ7122 (O78∶K80∶H9)
(APEC), are very diverse. They cause a complex of diseases in Human, animals, and birds. Even though large plasmids are often associated with the virulence of ExPEC, their characterization is still in its infancy., are also present in the sequence of pAPEC-1. The comparison of the pAPEC-1 sequence with the two available plasmid sequences reveals more gene loss and reorganization than previously appreciated. The presence of pAPEC-1-associated genes is assessed in human ExPEC by PCR. Many patterns of association between genes are found.The pathotype typical of pAPEC-1 was present in some human strains, which indicates a horizontal transfer between strains and the zoonotic risk of APEC strains. ColV plasmids could have common virulence genes that could be acquired by transposition, without sharing genes of plasmid function
- …